Geological Star Trek Review – “Arena”

Captain Kirk fights a Gorn in the 1967 TOS episode “Arena” – you can see Vasquez Rocks in the background.

Sulfur, niter (saltpeter) and carbon, as coal and as crystalline diamond, save Captain Kirk’s life in the 1967 TOS episode “Arena.”

When a remote outpost of the Federation is attacked by an unknown enemy, the Enterprise pursues the fleeing vessel, inadvertently entering a sector of space controlled by the Metrons, a race with powerful psychic powers. Kirk, transported by the Metrons to a desolate planetoid, is forced into a battle against the captain of the Gorn ship – a reptile-like creature protected by an almost indestructible armored skin.

The planetoid displays a rich geologic diversity. Kirk mentions finding ruby corundum. He uses niter (saltpeter), sulfur, and coal he finds to make gunpowder for use in a primitive cannon, and diamonds as projectiles (here – judging from the crystal shape – likely quartz was used as film prop). After injuring the Gorn, Kirk spares his life to the surprise of the Metrons.

There are almost 5.000 known mineral species, yet the vast majority of rocks are formed from combinations of a few common minerals, like feldspars, quartz, amphiboles, micas, olivine, garnet, calcite, and pyroxenes. We still know little about other worlds. Over 300 minerals have been identified in meteorites, 130 minerals were discovered so far on Mars and 80 on Earth’s Moon.

By convention, the names of terrestrial minerals (a crystalline combination of one or various elements) end with the suffix -ite, the denominations of elements with the suffix – ium, -um, -on, -gen, or -ine. This nomenclature is not always applied in Star Trek.

References:

  • De FOURESTIER, J. (2005): The Mineralogy of Star Trek. Axis, Vol.1(3): 1-24

Help Support History Of Geology

Unfortunately, as many are struggling in those uncertain times, I no longer can effort to put resources and time into the History of Geology blog and associated media, risking shutting them down indefinitely after 10 years of free info and news.

If you enjoy or find my content useful, I would ask for temporary support to keep running the blog. The donations will cover basic costs like internet connection and software needed to run the blog and associated media channels.

As a little thank you, all 1 Euro or more supporters providing their e-mail by a one-time PayPal-donation will receive a newsletter at the end of the month (beginning with March) with additional content to my public writings.



Supporters over 10 Euros will enter a lottery at the end of the month (beginning with March) with the chance to win a geology book or a mineral/fossil specimen and getting it shipped to them.

Please include an e-mail in the PayPal notification where you want to get the newsletter sent & for contact in case you win a prize. If you want to retract your donation, I will reclaim any money sent only after 5 days.

I really appreciate any help you can provide.

David Bressan.

Sagenhaftes Südtirol: Die Magie des Karfunkelsteins

“Nach einer Tiroler Sage erfahren wir folgendes über die Erschaffung der Gemse. Der Teufel bekam eines schönen Tages, nach ständigem Drängen an den Herrgott, die Erlaubnis dem Schöpfer ein Tier nachzubilden und ein “Viech” zu schaffen. Nun war es seine erste Tat eben diesem “Viech” schöne nach rückwärts gewundene Hörner zu geben, wie er selbst sie trug als Wahrzeichen seiner höllischen Macht. Da der Teufel aber für die Gestalt der Ziege sowohl des Bockes als auch der Geiß eine besondere Vorliebe hatte, mußte auch sein Tier so aussehen, nur daß er Bock und Geiß aus Übermut gleichermaßen mit Hörner, richtiger gesagt, mit der “Krucke” ausstattete. Damit es aber noch ein besonderes Aussehen erhalte, setzte er den Bart nicht an diese Stelle, wo ihn die Ziegen haben, sondern boshafterweise über das Waidloch. Dazu tat er noch einen langen buschigen Fuchsschwanz. Als die “Viecher” so fertig waren, hatte er eine richtige Teufelsfreude und gab ihm das Gebirge zum Wohnort, dort wo die Felsen und Grate am gefährlichsten sind, weil er wußte, daß dieses von ihm geschaffene sonderbare Wild die Jäger und Wildschützen besonders reizen würde und so mancher infolge seiner blinden Leidenschaft Leib und Leben daransetzen werde. Als sie aber so im Gebirge dahinsausten, die Teufelstiere, da sah er zu seinem Ärger, daß sie ständig mit ihren wunderbaren Fuchsschwänzen in Latschen und Zuntern hängen blieben und er, der Teufel, mußte hinterher sein und sie wieder aus ihrer unbequemen Lage befreien. Das ermüdete nicht nur sehr, sondern kostete vor allem auch sehr viel Zeit und außerdem ging ihm dabei manches “Viech” zugrunde, was ihn sehr verdroß. Als er eben wieder daran war, so ein “Viech” loszulösen und es im Augenblicke nicht gelang, biß er kurzerhand den Fuchsschwanz ab und machte es sogleich auch an allen anderen Gemsen, so daß an Stelle des buschigen Langschwanzes nun nur mehr das kurze Stutzer! zu sehen ist, das der Jäger mit dem Namen “Wedel” bezeichnet. Den wertvollen Bart aber, den Schmuck jedes Tiroler Schützenhutes, tragen die Gemsen noch heute dort, wo er nicht hingehört, nämlich über dem Hintern.”

R. Rothleitner “Volkstümliches über die Gemse” (1937)

Die Gämse oder Gams spielt in den Sagen, Brauch und Geschichten aus den Alpen eine kleine, aber feine Rolle. Sie ist eines der Symboltiere der Berge und Flur- und Bergnamen beziehen sich auf sie. Allein sieben Berge in den Alpen heißen Gamskogel und die Ortschaft Kitzbühel in Tirol hat eine Gams im Wappen. Auch viele traditionelle Lieder behandeln die schwierige und gefährliche Jagd nach ihr.

Gamsjäger waren einige der wenigen Alpenbewohner, die sich in die hohen Gipfelregionen vorwagten. Sie kannten die Berge, wie man sich zwischen Fels und Geröll bewegen kann, und wussten auch wenn sich das Wetter verschlechtern würde.

Gamsjäger wurden bewundert, aber da sie sich so oft in die Berge vorwagten, hatten sie auch einen eher zwielichtigen Ruf. So soll die Gams, mit ihren hakenförmigen Krucken und schwarzen Fell, eigens vom Tuifl geschaffen worden sein, um die jungen Jäger ins Gebirge und so in ihr Verderben zu locken. Sogar der große Naturforscher Saussure schreibt in seinem Buch Voyages dans les Alpes (1786-1796), dass Gamsjäger, “in den Wildnissen mit dem Teufel Umgang, der sie dann endlich in den Abgründen stürze”, hätten. 

Doch der Tuifl kennt auch viele Geheimnisse der Berge.

Im Jahre 1745 entdeckt der Bauer Andrä Kreidl auf der Gamspirsch am Roßrücken im hintersten Zillertal die ersten Granate, und beginnt zwei Jahre später mit dem Abbau für Schmucksteine.

Rote Granatkristalle im Glimmerschiefer aus der Sammlung Giuseppe Garbari (1863-1937).

Die Granatvorkommen Südtirols liegen hauptsächlich im Bereich von kristallinen Schiefern und Gneise der Zentralalpen, doch kommen Granate auch in Kontaktzonen, in magmatische Intrusionen und Resten ozeanischer Kruste vor.

Das Passeiertal ist ein bekanntes Fundgebiet für Granate. Der Granatkogel, der seinen Namen dem ungewöhnlichen Almandinreichtum verdankt, ist von der Timmelsjochstraße über das Seebertal hin erreichbar. Die herabgestürzten Felsblöcke und Moränenmaterial rund um den kleinen Seebersee sind ergiebige Fundstellen. Begleitmineralien sind Hornblende in schwärzlich-grüne, bis 20 Zentimeter langen Büscheln (genannt Garben) sowie Disthen. Wie in anderen Gebieten der Ostalpen (Zillertal) wurde auch hier einst Granat für Schmuckzwecke gewonnen. Im letzten Krieg fand das Material auch als Schleifmittel Verwendung.

Eine weitere wichtige Fundstelle ist das berühmte Bergwerk St.Martin am Schneeberg.

Das Pfitschtal biegt bei Sterzing vom Eisacktal in Richtung Osten hin ab. Es handelt sich um ein geologisch höchst interessantes Gebiet, das auch in der Geschichte des Mineraliensammelns eine bedeutende Rolle spielte. Im Talgrund ist die Gesteinsabfolge des Tauernfensters aufgeschlossen. Auf der nördlichen Talseite ragen die älteren, hellen Gneisformationen des europäischen Kontinentalplatte auf, die von einem weißen Quarzitband, das sich vom Talboden bis zum Pfitscherjoch hinzieht, überlagert werden. Meeresboden des Penninischen Ozeans, der ursprünglich aus Tiefseesedimente, basaltischen Tiefseelava und Peridotiten bestand, wurde hier metamorph in bräunliche Kalkschiefer, grüne Chloritschiefer und Serpentinit, die auf der südlichen Talseite aufgeschlossen sind, umgewandelt. Spessartin kommt in Millimetergroße, gelbliche bis rötliche Kristalle, sowie Grossular als Millimetergroße, rote Kristalle, im Grüngestein vor. Berühmt ist die Fundstelle auf der Burgumer Alm.

Literatur:

  • FRUTH, L. (1975); Mineral Fundstellen – Band 1 Tirol Salzburg Südtirol – Ein Führer zum Selbersammeln. Christian Weise Verlag: 208 Seiten
  • Gartner et al. (2002): Burgum im schönen Pfitschtal. Mineralogie – Geologie – Archäologie. Geschichte und Geschichten. Eigenverlag Arthur Gartner, Sterzing: 128 Seiten
  • GARTNER, A. (2010): Im Reich der Bergkristalle. Die Mineralien des Pfitschtales. Erker
  • Glas et al. (1997): Zillertal: Das Tal der Gründe und Kristalle. extraLapis Nr. 12: 96
  • HOSSFELD, J. (1977): Die Mineralien im Sterzinger Gebiet – Einige Hinweise zu den Fundorten Alpiner Mineralien im Gebiet um Sterzing. Klub Eisacktaler Mineraliensammler, Athesiadruck Brixen: 75 Seiten

Stoanklauber in Tirol

„Es ist fast nichts in dem Mineralreiche, wovon Tirol nicht etwas besitzt.“

Josef v. Sperges, 1765
Das Tauernfenster auf der “Geognostische Karte Tirols“, um 1849. Das Zusammentreffen von verschiedenen Gesteinsarten – Sedimente und Lavagestein des Penninischen Ozeans und Gneise des europäischen Kontinents – verbunden mit der Metamorphose durch die Auffaltung der Alpen vor 60 bis 30 Millionen Jahre, führte zur Bildung vieler verschiedener Minerale, die heutzutage in den Tiroler Bergen gefunden werden können.

Die „Stoansucherei“ ist ein steinaltes Gewerbe. Bereits vor 9.600 Jahren suchten die Menschen die Gipfelregionen der Tiroler Alpen auf, um Bergkristall zu sammeln und aus diesen Steinwerkzeuge herzustellen. Abbau von Kupfererz ist in Südtirol ab ungefähr 1.300 v.Chr. nachgewiesen. Bei St. Lorenzen wurden Hinweise auf Kupferverarbeitung in der Frühen und Mittleren Bronzezeit gefunden. Vom Ternerbühel stammt eine steinerne Gussform für Kupferbeile und auf der Kleinen Pipe bei St. Georgen ist ein Stück eines Gusskuchens erhalten geblieben. Welche Kupfererzlagerstätte zwischen Pfundererberg, dem Tauferer- und Ahrntal genutzt wurde ist allerdings unbekannt. Im späten Mittelalter und der frühen Neuzeit erlebte der Bergbau hier eine Blütezeit.

In 1558 verfasst Georg Rösch v. Geroldshausen die älteste bekannte Aufzählung von Tiroler Mineralien. Er listet hauptsächlich Erze und Gesteine auf, die in den verschiedenen Bergwerken abgebaut werden, erwähnt aber auch Minerale die auf den vergletscherten Gipfeln der Tauern gefunden werden können.

„Granaten, Talggen, Kobolt, Federweiss: Die Malochiten haben ihren Preyss; … Crystallen darbey, durchsichtig weiss. … der edle Lapis Armenus [hier vermutlich Azurit], Den man sunst bringt aus fernen Landten, Der ist auch in Tyrol vorhandten.“

Um 1581 berichtet Ladurner, dass die Bewohner des Zillertals mit dem Abbau von Federweiss (Asbest und Talk vom Hollenzen, Greiner und Rotkopf) etwas Geld dazuverdienen. In 1745 entdeckt der Bauer Andrä Kreidl auf der Gamspirsch am Roßrücken im hintersten Zillertal die ersten Granate und beginnt zwei Jahre später mit dem Abbau für Schmucksteine.

Der Roßrücken im hintersten Zillertal teilt den Gletscher in Hornkees und Waxeggkees. Alle drei Bereiche sind bekannt für ihren Mineralreichtum, insbesondere für die Granate. Die Almandine finden sich im Bereich des Roßrückens in lauchgrüne, feinkörnige Chlorit-Biotitschiefer. Im Bereich der Gletscher handelt es sich bei dem Muttergestein hingegen um einen Granitgneis.

In 1738 beschreibt Anton Reschmann in seinem “Regnum animale, vegetabile et minerale medicum Tyrolense” die “Carbunculi calcedoni” – vermutlich Granate – im Tauferer Tal. In 1777 beschreibt Ritter Erenbert von Moll die Mineralien die in Tirol gefunden werden können:

„Gold in Quarz und Schiefer mit goldischem, silberhältigen Marcasit … Silber in Bleyglanz … Bley …. Eisen in Schiefer … Kobald … Granaten … Grüner und schwarzer Störl [und] Sinectis (Talk) vom Greiner.“

Im Sommer 1777 wurden in herabgestürtzten Talk-Chlorit-Blöcken vom Greiner schwarze, wirrstrahlige angeordnete Kristalle bis über 10 Zentimeter Länge gefunden. Der kaiserlich-königliche Direktoratsrat in Tirol und Naturforscher Franz Joseph Müller vermutete, dass es sich um Turmalin handeln könnte und führte weitere Untersuchungen durch. Das Vorkommen von “Störl oder Schörl” am Greiner ist auch der erste Fund von Turmalin in Europa überhaupt (vorher nur von Ceylon und Brasilien bekannt).

Abbildung von Turmalin-Kristallen vom Greiner (Zillertal) aus “Nachricht von den in Tyrol entdeckten Turmalinen oder Aschenziehern“, Franz Joseph Müller von Reichenstein (1778).
Turmalin Kristall in Chloritschiefer vom Pfitschtal. Es handelt sich um dieselbe Gesteinsformation die zum Greiner ins Zillertal hinüberzieht. Etikette von der Brendler Sammlung, um 1923.

Ein weiterer Forscher der in 1784 ins Zillertal reiste ist Belsazar Hacquet. In “Hacquets Mineralogisch-botanische Lustreise von dem Terglou in Krain zu dem Berg Glokner in Tyrol” (1784) berichtet er von einem Jäger, der ihm in Breitlahner Stufen mit Granat und “Strahlschörl” (wohl Aktinolith) verkauft.

Die ersten Mineralien wurden bereits im 16. Jahrhundert an den Fürstenhöfen Europas als Kuriositäten gesammelt. In Tirol legt Erzherzog Ferdinand II. (1529-1595) auf Schloß Ambras eine bedeutende Sammlung an, die auch Kristalle aus dem Zillertal umfasst. Aber erst im 19. Jahrhundert wird das Mineraliensuchen und -sammeln auch für weniger begütete Sammler erschwinglich. Um 1796 werden die ersten “Stuffenhändlern” erwähnt, Leute die in den Bergen nach Mineralien und Gesteine suchen und nach Augsburg und München verkaufen. Selbst Johann Wolfgang von Goethe besitzt eine “Suite” mit 37 Tiroler Mineralien – darunter schöne Diopside, Granate, Bergkristall, Cyanit, Tremolith, Pyroxen, Eisenglanz, Apatit und Idiokras (Vesuvianit) – die er von seinem Gönner Großherzog Carl August geschenkt bekommen hat.

Wäre der von Alois Pfaundler in 1803 vorgeschlagene “Mineralogisch-geognostischen Vereins in Tirol” auch tatsächlich gegründet worden, wäre Tirol auch das erste Land mit einem eigenen Mineralienverein geworden. So aber wird der erste Mineralienverein in 1807 in London gegründet, gefolgt in 1830 von Paris, in 1836 von Tirol und in 1848 von Berlin. Das Mineraliensammeln ist von einem einfachen Zusammentragen von Naturkuriositäten zu einem wissenschaftlichen Hobby geworden.

Es werden auch die ersten Mineralienführer veröffentlicht. In 1821 veröffentlicht Wilhelm, Edler von Senger das erste Mineralienbüchlein mit dem Titel „Versuch einer Oryctographie der gefürsteten Grafschaft Tyrol“, gefolgt in 1852 von Karl Doblickas “Tirols Mineralien” und Leonhard Liebeners “Die Mineralien Tirols.” Der Südtiroler Naturhistoriker Georg Gasser veröffentlicht in 1913 sein umfassendes Standardwerk über „Die Mineralien Tirols.”

Und wo es eine Nachfrage für immer neue Mineralstufen gibt, da gibt es auch einen Markt.

Um 1850 öffnen die ersten Mineraliengeschäfte, die Stufen und Mineralien-Partien an interessierte Sammler anbieten. Der Mineralienhändler Kassian Mayr aus Straß bietet zum Beispiel “grünen Augit, Granat, Turmalin, verschiedene Quarzkristalle, Chalcedon, Prehnit, Zeolith, Analcim, Adular, Periklin, Apatit, Liebenerit, Egeran” und andere Minerale an. Um 1870 erlebt der Handel mit Tiroler Mineralien und Edelsteine eine Hochblüte.

Literatur:

  • FRUTH, L. (1975); Mineral Fundstellen – Band 1 Tirol Salzburg Südtirol – Ein Führer zum Selbersammeln. Christian Weise Verlag: 208 Seiten
  • Glas et al. (1997): Zillertal: Das Tal der Gründe und Kristalle. extraLapis Nr. 12: 96
  • HOSSFELD, J. (1977): Die Mineralien im Sterzinger Gebiet – Einige Hinweise zu den Fundorten Alpiner Mineralien im Gebiet um Sterzing. Klub Eisacktaler Mineraliensammler, Athesiadruck Brixen: 75 Seiten

Giovanni Arduino And The Geology Of The Dolomites

» [I worked] still young in the mines of Klausen and elsewhere in Tyrol, in order to learn Metallurgy; I went there by chance, and I was urged to stay by my natural very strong inclination for the universal Mineralogy, and for all the matters concerning the Science of the Fossil Kingdom. «

Venetian scientist Giovanni Arduino worked at an early age as a mining assistant in the iron mines of Klausen in South Tyrol.

Italian mining engineer Giovanni Arduino (1714-1795) is considered nowadays the spiritual father of the modern chronostratigraphic chart. Based on his observations in the Venetian Dolomites and Tuscany in 1759 Arduino proposed “a series of layers forming the visible crust of earth … ” subdivided “in four generalized units following each other.” He named them primary, secondary, tertiary, and quaternary, speculating that they formed at various times and under different environments.

Arduino used a section of rocks exposed in the Val dell´Agno (Venetian Dolomites) to explain his classification. The numbers refer to the thickness of the strata, the letters to the description in the accompanying text. The extremely tattered state of the original drawing suggests that Arduino showed it repeatedly to the many naturalists who visited him.
  • Primary Layer: Pebbles formed by the erosion of underlying “primitive or primeval” – considered to be the earliest – rocks. Fossils were rare, if not absent. This unit includes unstratified or poorly stratified rocks, like porphyry, granite and schist, of the crystalline basement of the Dolomites. Arduino’s rock unit survives into modern chronostratigraphic charts as the Paleozoic Era (rocks older than 252 million years) and Precambrian Eon (541 million years to about 4.6 billion years ago).
Mica shist as crystalline basement rock of the Dolomites, Arduino’s Primary Rocks.
  • Secondary Layer: A well-stratified succession of marl- and calcareous rocks with marine fossils, making up the characteristic peaks of the Dolomites. In 1841, English geologist John Phillips, based on the correlation of fossils in rock strata worldwide, renamed this sedimentary succession the Mesozoic Era (252 to 66 million years ago).
Sas de Pütia showing Arduino’s Secondary Rocks, the well-stratified red Gröden-Sandstone, grey Bellerophon limestone and fossil-rich reef limestone.
  • Tertiary Layer: Poorly consolidated sediments like gravel, clay, fossiliferous sand, and also younger volcanic rocks. Our modern Cenozoic Era (66 to 2 million years ago).
A conglomerate of the Tagliamento catchment, dating into the Pleistocene to Miocene according to our modern stratigraphic system (2-23 million years). Similar deposits were Arduino’s Tertiary Rocks.
  • Quaternary Layers: Unconsolidated sediments found in valleys. Our modern Quaternary Period (2 million years ago to modern age).

Geological Star Trek Review – “Encounter at Farpoint”

» Space: the final frontier. These are the voyages of the starship Enterprise. Its continuing mission: to explore strange new worlds. To seek out new life and new civilizations. To boldly go where no one has gone before! «

Encounter at Farpoint is the pilot episode of the American science-fiction television series Star Trek: The Next Generation (TNG), which premiered on September 28, 1987. In the 79 episodes of Star Trek: The Original Series almost 50 minerals are mentioned, and in TNG, successfully running from 1987 to 1994, also minerals play a role. 74 different mineral and mineral-like names are mentioned in the 178 produced episodes. Set almost 50 years after the original voyage of the first Enterprise, the new spaceship and new crew is again checking on mining colonies or retrieving minerals and ore from distant worlds.

The new captain of the Enterprise – Captain Jean-Luc Picard – has a passion for archaeological research, but also a general interest in the collection of natural curiosities. A large cross-section of an agate nodule and a malachite concretion are among the mineral specimens on display in the captain’s ready room on board the Enterprise.

Picard keeps also a small transparent crystal of unknown origin on his desk. He often plays with the crystal when he has to make an important decision, like seen in the episode Conspiracy, Where Silence Has Lease, Suddenly Human, A Matter of Time, The Masterpiece Society and more. His first officer, William T. Riker, also did so on occasion (Gambit, Part I).

Jean-Luc Picard’s favourite crystal 💎

In the first episode with the title Encounter at Farpoint the newest flagship of the United Federation of Planets, Starfleet’s USS Enterprise-D, travels to Deneb IV for its maiden voyage. Deneb IV (or Alpha Cygni IV) is a Class M planet according to the classification system adopted in the Star Trek universe. The classification system is based on size (gas giants or small, rocky worlds), composition (rock-metal core or gas), geological activity (inactive- active), atmosphere (from oxygen-rich to toxic) and comprises fourteen planet types. For example, planets suitable for humanoid life-forms, small, rocky worlds with some geological activity, and an oxygen-rich atmosphere, are classified as M after Minshara, the native name of Vulcan, homeworld of Commander Spock. Deneb IV is also tectonically active as the mention of geothermal energy suggests.

The natives of Deneb IV, the Bandi People, offer a highly advanced base on the planet’s surface – Farpoint Station – to be used by Starfleet. As the crew of the Enterprise visits the station, they soon discover that the entire building is actually an alien life-form, able to convert the geothermal energy into matter and structures of the station.

The transformation of energy into solid matter plays a role in the replicator units and holodeck – a highly evolved virtual reality engine – of the Enterprise. Even more important is the property of Radan to control the flux of energy. In the Star Trek universe, Radan is not only a rare and valued gemstone, but this mineral is used in its purest and crystalline form – dilithium – in the spaceship’s reactors. Curiously enough, quartz, one of the most common minerals on Earth, is almost never mentioned in Star Trek. Perhaps because quartz is often used as a prop for dilithium crystals in various episodes.

Spock & “Scotty” during the delicate operation replacing dilithium crystals in the reactor core, from the TOS- episode “Elaan of Troyius”. Real quartz crystals were used as props.

Its (supposedly) cubic crystal structure can somehow control the reaction between matter and antimatter, providing the energy for the warp-drive, making faster-than-light travel possible. This science-fiction property of the crystalline dilithium is loosely based on real science. Some crystals, such as calcite, can filter or distort certain wavelengths of light, a form of energy.

Dilithium crystal as featured in TNG as a part of the warp-core.

References:

  • De FOURESTIER, J. (2005): The Mineralogy of Star Trek. Axis, Vol.1(3): 1-24
  • De FOURESTIER, J. (2016): The mineralogy of Star Trek: the next series. Axis, Vol.12(1): 1-24
  • De FOURESTIER, J. (2020): The mineralogy of Star Trek: Notitiae Novum. Axis, Vol.16(1): 1-25
  • NOOR, M.A.F. (2018): Live Long and Evolve – What Star Trek Can Teach Us about Evolution. Princeton University Press: 208
  • STEVENSON, D.S. (2018): Granite Skyscrapers – How Rocks Shaped Earth And Other Worlds. Springer: 386

Geomythology: The Beast of Gévaudan

During the last day of June 1764, the 14-year-old Jeanne Boulet was killed near the village of Saint-Étienne-de-Lugdarès, at the time located in the region of Gévaudan. Just a month later, a 15-year-old girl was attacked near Puylaurent in the same region. Deadly wounded, she managed with her last breath to describe the attacker as “a horrible beast.” Authorities started to note an unsettling pattern. Already September 8, 1762, the young son of the Yolle’s, herding the flock of sheep, disappeared near the village of Laval in the province of Dauphiné. Only remains of the boy, partially eaten, were recovered. Animal attacks were nothing extraordinary and the mutilated body of the unfortunate victim was quickly buried. However, now so many attacks were reported, that the authorities could no longer ignore them. Just one month before Jeanne Boulet’s death another shepherdess was attacked near the city of Saint-Flour in the Auvergne. Her herd formed a defensive ring against the attacker, saving the girl in the end. Notable enough the attacking animal seemed to be less interested in the cattle as in the girl. In the next months more and more children and women were killed by the unknown attacker. Soon the creature was known as the Beast of Gèvaudan.

“Figure of the Ferocious Beast”, one of the first depictions of the Beast published in November 1764.

Authorities, fearing a mass hysteria in the population, asked for military assistance. Jean-Baptiste Duhamel, the captain of the local infantry, organized a hunt involving, as he claims, 30.000 men. But even as the beast was finally spotted and shot, it escaped unharmed by the bullets into the woods (the guns at the time were however notoriously inefficient). A local newspaper wrote at the end of the first year:

» …a ferocious beast of unknown type, coming from who knows where, attacks the human species, killing individuals, drinking their blood, feasting on their flesh, and multiplying its carnage from day to day…hunters who are in pursuit have neither been able to stop it, because it is more agile than they, nor lure it into their traps, because it surpasses them in cunning, nor engage in combat when it presents itself to them, because its terrifying appearance weakens their courage, disturbs their vision, sets their hands shaking, and neutralizes their skill. «

The Gévaudan and Auvergne were rural areas, characterized by the rugged and mountainous landscape of the Massif Central. Just some years before the killings, physician Jean-Etienne Guettard visited the region. During his visit of Vichy, a city in northern Auvergne, he noted some strange dark rocks, used by locals to make bricks and roofing shingles (“roche tuiliére” in French).

Stone wall made from basalt columns, found in the town of Murat, Massif Central.

Guettard was interested also in geology and as a naturalist helped rich collectors to classify their rock samples. He noted that the roche tuiliére were very similar to samples of lava coming from Mount Etna in Sicily and hosted in the collection of the Count Of Orléans. Guettard therefore correctly concluded that large parts of the Auvergne and also some parts of the Gévaudan were formed by the lava flows of ancient, now extinct, volcanoes.

Various types of rock characterize the area where the beast preyed on its victims. The highlands of the Margeride, in the west, are composed mainly of old metamorphic granitoids (rocks of magmatic origin) and gneiss. The mountain massifs of Cantal, Aubrac and Velay, surrounding the Gévaudan, are composed mainly of younger basaltic lava. Some sedimentary rocks are found in the south.

Simplified geological map of the Gévaudan with recorded attacks by the Beast.

The rocks forming the highlands are impermeable to water, the landscape here is characterized by gentle rolling hills, covered by a mosaic of meadows, forests, and swamps. The surrounding volcanic rocks are very resistant to weathering, the landscape here is characterized by a more rugged terrain, single volcanic cones, maar lakes and many rocky outcrops prevail.

Outcrop of volcanic rocks in the extinct volcano of Puy de l’Enfer.

It was extremely difficult to hunt on such a terrain. The hunter D´Enneval de Vaumesle noted after a first survey of the area that,”this beast will not be an easy catch.” Horses could not be used in the swamps and the creature could easily escape in the forests and hide between the rocks.

Swamp landscape with eroded volcanic cones in the moor of Narse.

The Cantal Massif, with some peaks over 1.500 meters high, also acts as a barrier for clouds. The weather in the Gévaudan is notoriously bad, with cold and long winters and wet summers. Again and again the Beast escaped into the mist or hunters gave up the pursuit due to the heavy rain.

View from the Puy Mary in the Cantal Massif, a large and ancient volcanic edifice.

Despite all efforts, the Beast continued to kill. King Louis XV. was even forced to replace Duhamel, sending his own gun-bearer from Paris to the Gévaudan. But also François Antoine, despite his experience, had difficulties with the terrain. Only in September 1765, he shot and killed a large wolf near the town of Murat in the Cantal Massif. The king himself announced the death of the Beast.

The town of Murat today, with outcrop of magmatic rocks and a volcanic cone in the background.

But just two brief months later the attacks resumed.

The mysterious killings continued until July 1767, when the local hunter Jean Chastel shot another large wolf in the forest of Teynazére, on the highlands of the Margeride. Until its final demise, the Beast (or maybe a pack of wolves) had killed at least 116 children and women and wounded many more.

References:

  • SMITH, J.M. (2011): Monsters of the Gévaudan – the Making of a Beast. Harvard University Press:378

Geological Movie Review – “Alien”

When the movie “Alien” was released in 1979, it quickly terrified audiences worldwide. Its unexpected mix of classic horror and science-fiction elements got at first mixed reviews, however, over the years Alien had come to be regarded as one of the best horror-science-fiction films ever made.”Alien” screenwriters Dan O’Bannon and Ronald Shusett based parts of their script on various older science-fiction movies and tales, like “At the Mountains of Madness”, a science-fiction/horror story published by American author H.P. Lovecraft in 1936. In the story, a team of scientists is hunted and killed by ancient creatures resembling fossil animals. Lovecraft apparently based this part of his story on the real discovery of fossil archaeocyathids in Antarctica made in 1920 by geologist William Thomas Gordon. Archaeocyathids are an extinct group of sponge-like creatures believed to be among the oldest animals ever to live on Earth.

Hans Rudolf Giger, Swiss surrealist artist, architect and industrial designer, was hired to create all forms of the Alien featuring in the film, from the egg to the adult. Giger created various versions of the alien life-cycle, like a gigantic egg nest, replaced in the final movie with an egg silo inside a derelict spaceship. The eggs were directly inspired by female reproductive organs, slightly modified to avoid censorship. The facehugger, a parasite attaching to the head of its victim to incubate an embryo, is based on the bones and muscles of a human hand and male genitalia, its springlike tail was added to emphasize its quick movements. The parasitic life-form was an idea of Ronald Shusett. Shusett suggested that one of the crew members be implanted with an alien parasite to explain how the alien life-form, discovered at first as an egg in a derelict alien spaceship, came on board of the mining spacecraft Nostromo. The parasite bursts from the chest of its victim and soon the crew has to deal with the fast-growing life-form hiding in the air vents of the spaceship. The design of the chestburster and the full-grown xenomorph (alien-shaped thing) is based on Giger’s “Necronom IV“, an artwork created in 1976. The surrealist drawing shows a female figure composed of different parts of insects, parts of vertebrates and even fossils. Giger used the fossils of 300 million-year-old crinoids, commonly called sea lilies, on display in the Aathal dinosaur museum as a source of inspiration.

A petrified crinoid. Similar fossils inspired the creature featured in the successful “Alien” saga.

The earliest known crinoids date back to the Ordovician (some 450 million years ago). Their remains are very common in the fossil record, forming rocks like limestone or dolostone. The skin of echinoderms, including sea cucumbers, sea urchins, crinoids, brittle stars and starfish, is covered with tiny ossicles made of calcium carbonate forming a protective, yet flexible, outer shell. In a similar way, Giger’s Alien is protected by a silicon-based external skeleton. This outer shell is also very useful to contain the acid blood of the creature. Concept artist Ron Cobb added the acid blood as a defense mechanism, making it impossible to kill the Alien without damage to the crew or the spaceship.

In the sequel “Aliens” a team of space marines enters an Alien hive, the walls resembling Goethite, Grube Eisekaute, Bad Marienberg, Germany.

The life-cycle of the Alien from egg to queen (as introduced in the sequel) resembles the life-cycle of real animals, the Ichneumonidae. The Ichneumonidae is a wasp family preying on insects. An adult female wasp will lay her eggs within a host through a process known as ovipositing. The eggs will grow and develop into larvae, which will feed on their host from the inside-out. Somewhere along the way the host will actually die or be kept in a state very near death until, finally, the little wasp spins a cocoon around and-or within its host, eventually emerging as an adult wasp. A horrified Charles Darwin famously mentions in a letter sent in 1860 to his friend, the botanist Asa Gray, the parasitoid wasp:

» I cannot persuade myself that a beneficent and omnipotent God would have designedly created the Ichneumonidae with the express intention of their feeding within the living bodies of caterpillars… «

In their natural environment, these wasps play important roles in regulating the populations of their insect hosts, and have been used in agricultural crops to control caterpillar pests. Dolichogenidae xenomorph is a parasitoid wasp species named in 2018 after the xenomorph, as “the wasp is also black and shiny like the Alien.”

The graphic representation of the “perfect organism” earned the visual effects team of “Alien” a well-deserved Academy Award.

Geological Observations Revolutionized Renaissance Art

» It is their art to stop at every stone and carry out an investigation at every layer of earth! «

Swiss author Rodolphe Toepffer describing geologists

During the Renaissance, the study of common rocks inspired great artists and revolutionized artistic techniques. Italian artist Leonardo da Vinci was one of the first naturalists to both understand the origin of sedimentary rocks and recognize fossils as petrified remains of former living animals. He used his geological insights to improve his paintings and in doing so inspired an entire generation of artists.

The Alps, ca. 1513, red chalk drawing by Leonardo da Vinci. He was fascinated by mountains and called them the “bones of the earth.”

This approach can be seen in da Vinci´s earliest recognized works, dating to 1473. In “The Hills of Tuscany” or “Landscape with River”, we are apparently standing on the borders of the Apennines, looking down onto a waterfall and the larger valley of the Arno.

The layers of the earth, visible above the waterfall, are depicted in a geologically correct way – thin at the bottom and thick on the top, like the Turbidite sequences found in the Apennines. Together with the lines used to draw the cultivated fields in the Arno valley, the sedimentary layers help to create an three-dimensional effect giving to this landscape a realistic “depth.” This effect is also helped by the waterfall, which is shown flowing away from the observer in a hydrologically correct manner down the slopes of the mountains into the Arno valley.

Leonardo da Vinci’s sketch of an outcrop.
Outcrop with sedimentary layers as spotted in the Apennines.

Leonardo’s technique was soon adopted by other artists. German painter Albrecht Dürer visited Italy twice to study the perspectival paintings of contemporary Italian architects and artists. Traveling back home, he tried to apply this revolutionary method to his own paintings. One of his drawings shows a quarry, maybe somewhere near his hometown of Nürnberg, displaying horizontal layers of sandstone and thinner layers of marl in a manner similar to da Vinci’s. Using the tectonic fractures as vertical construction lines, Dürer tried here to subdivide the picture like da Vinci and create the illusion of depth along the steep cliff.

“The Quarry” by Albrecht Dürer, probably painted in 1495.

Despite never really completely mastering the geometrical rules necessary to create a perfect perspective in a painting, Dürer nevertheless popularized this new technique in Europe. Soon, many other artists followed and began painting realistic landscapes, even studying rocks in order to correctly depict them in their art.

References:

  • ROSENBERG, G.D. (2009): The measure of man and landscape in the Renaissance and Scientific Revolution. In Rosenberg, G.D., ed., The Revolution in Geology from the Renaissance to the Enlightenment: Geological Society of America Memoir 203: 13-40

Pyroclastic Flows of the Athesian Volcanic Group

May 8, 1902, began as a sunny day in Martinique, an island in the Caribbean, with only a column of steam rising above Mount Pelée. When the volcano suddenly exploded.

The first rescuers arrived on the site twelve days after the eruption, accompanied by British, French and American geologists. In the city of St. Pierre, almost all of the buildings had been destroyed and an estimated 20.000-40.000 people killed.

» I looked back and the whole side of the mountain, facing towards the town, seemed to open and topple down on the screaming people. I was burned by stones and ashes …, but I got to the cave «

Havivra Da Ifrile, a girl who survived the destruction of St. Pierre hiding inside a cave near the shore.
Photographs of the city of St. Pierre before and after the eruption of Mount Pelée, the volcano is seen in the background (from LACROIX 1904).

Geologist Edmund Hovey of the American Museum of Natural History, among the first to arrive to the destroyed city, noted that “In many places the limit [of the devastation] passes single trees, one side is dark and burned, the other green as if an eruption never happened.” A lava flow or landslide could not explain the burned trees nor could it explain the sharp boundary between the destroyed and untouched areas.

Two months later, geologists Tempest Anderson and John S. Flett of the Royal Society of London survived a smaller eruption of Mount Pelée.

» The cloud had a spherical form and resembled rounded protuberances amplifying and doubling with terrifying energy. They extended to the sea, in our direction, boiling and changing shape at every moment. It didn’t spread laterally. It didn’t rise up in the atmosphere, but it descended on the sea as a turbulent mass… «

Sequence showing a pyroclastic flow photographed December 1902 by French volcanologist Alfred Lacroix (from LACROIX 1904).
Alfred Lacroix.

For the very first time geologists observed a deadly nueé ardente – an incandescent cloud or glowing avalanche as the phenomenon was first named by French volcanologist Alfred Lacroix in 1904. A nueé ardente, in modern literature referred to as a pyroclastic density current, is a mixture of volcanic material and hot gases. Because its density is greater than air, it sinks downward, flowing like an avalanche along the slopes of a volcano. Pyroclastic flows can originate from the collapse of the eruption column, from a lateral blast or from the partial collapse of a volcano.

Researchers were able to estimate temperatures inside the pyroclastic flow that destroyed St. Pierre based on the observation that bottles melted (glass melts at ~700°C), but copper tubes were not deformed (copper melts at 1.100°C). The geologists, therefore, concluded that temperatures of a pyroclastic flows can range between 700 to 1.000°C. The high temperatures inside a pyroclastic flow also explain why so many people perished in St. Pierre. The heat was so intense that it instantly burnt the outer layers of skin and flesh. As the flesh shrinks due to the loss of water, the inner organs were squeezed out from their cavities. Even those not hit directly by the pyroclastic flow weren’t spared. Inhaling the still 300°C hot gases, their lungs quickly filled with liquid, drowning them.

The photo shows a 200 million-year-old ignimbrite – a name used for lithified deposits of a pyroclastic flow and derived from the Latin word for fire – of the Athesian Volcanic Group. Some of the larger clasts in the photo show an outer rim, indicating that the temperature inside the pyroclastic flow was high enough to alter the mineralogical composition of the rock. The larger rocks are embedded into a matrix of volcanic ash. Pyroclastic flows – a mixture of rocks, overheated gases and vapour – are able to transport even large boulders at a speed of 160km/h. As a result, the impacting mass destroys everything in its path, as happened to the town of St. Pierre.

An exceptional fossil discovered in 1931 in Athesian Volcanic Group deposits – “Tridentinosaurus antiquus by GB Piaz” – The skeletal remains are surrounded by a carbonaceous patina of soft parts, making it the oldest body fossil found in the Southern Alps. It is suggested by some authors, based on the preservation of the fossil, that the animal was killed during a volcanic eruption by a pyroclastic surge.

References: