Sagenhaftes Südtirol: Der Teufelsstein bei Terenten

Das vereinzelte Vorkommen großer einzelner Gesteinsblöcke konnten sich die Menschen lange Zeit nicht erklären. Man schrieb diese Findlinge den Walten dunkler Mächte und Zauberer zu.

Das Naturdenkmal “Teufelsstein”.

Am Geißklapf bei St. Sigmund erkennt man im Felsen einen Geißfuß-Abruck. Den Stein hat einst der Teufel von Getzenberg herübergetragen und bis St. Sigmund gebracht.

Der Teufel heißt im Pustertal “Tuifl” und hat die Gestalt eines Geißbocks.

Der Sage nach hatten die Mühlwalder Bauern im schönen Pustertal einst den Teufel derart erzürnt, dass dieser Rache schwor. Er trug einen Stein von Lüsen herüber und wollte ihn vom Mutenock nach Mühlwald hinunterrollen lassen. Dazu wählte der Teufel den kürzesten Weg. Weil der Stein aber schwer war und auch ein Teufel einmal rasten muss, hat er seine Kraxe mit dem Stein nieder gestellt. Mehrere senkrechte und waagrechte Striche auf dem Felsblock sind die Spuren der Kraxe. Den kleinen Stein hat der Teufel mitgenommen um die Kraxe besser abstellen zu können.

In seiner Wut und in seinem Zorn gegen die Mühlwalder hatte er aber nicht bemerkt, dass der Morgen zu grauen begann und dass der Mesner von Terenten – der ein Frühaufsteher war – schon die Betglocke zum Morgengruß läutete. So musste der Teufel den Stein liegen lassen und wieder hinab in die Unterwelt flüchten.

So kommt es, dass der „Teufelsstein“ bis heute mitten im Wald auf ca. 1.700 Meter, oberhalb vom Nunewieser, liegt. Eine andere Version der Sage wurde von Hans Fink aufgezeichnet, wonach der Teufel mit dem besagten Teufelsstein durch die Lüfte flog, um in Mühlwald die neue Kirche zu zerstören. Doch beim Ave-Maria-Läuten entglitt ihm der Stein, und da liegt er noch heute.

Beim Teufelsstein handelt es sich tatsächlich um einen großen Findling, der von den Gletschern aus den nahen Zillertaler Alpen während der letzten Eiszeit hierher verfrachtet wurde. Als die großen Gletscher vor 18.000 Jahren abschmelzen, blieb auch der Gneis-Block liegen, und so liegt er noch heute da.

Unheimliche Geschichten ranken sich auch um den Hexenstein mit den mysteriösen Einkerbungen im harten Fels, der ganz in der Nähe des Teufelssteins gefunden werden kann. Der Schalenstein im Winnebachtal soll einst Schauplatz großer Hexenversammlungen gewesen sein. Zur Sommersonnenwende sollen sich dort die Hexen auch zu Trink- und Tanzgelage mit dem Teufel getroffen haben.

Literatur:

  • MAHLKNECHT, B. & AUKENTHALER-OBBERRAUCH, E. (2016): Südtiroler Sagen. Athesia Verlag: 396

Nutzen und Nutzung Quartärer Sedimente

Quartäre Sedimente werden oft unterschätzt, spielen aber eine bedeutende Rolle als Baugrund, Rohstoff, Grundwasserträger und auch mögliche Gefahrenquelle, in der Form von Massenbewegungen.

Tongrube “Gasser” mit Glaziolakustrine Schuttsedimente.

Lockergesteine werden in der Industrie zumeist als „Steine und Erden“ zusammengefasst, der Begriff umfasst bindige und nicht bindige Sedimentgesteine.

Nicht bindige Sedimente wie lockerere Sand und Kies sind vor allem als Baustoff für Straßenbau begehrt. Die Rundung und Korngrößenverteilung des Sediments spielt dabei eine bedeutende Rolle. Besonders hohe Ansprüche werden an Sand und Kies als Betonzuschlagstoffe gestellt. Das Material muss möglichst rein sein (lehmig-tonige Bestandteile unter 2%) und keine Beimischungen enthalten (die Wasser aufnehmen oder zu unerwünschten Reaktionen führen könnten). Scharfkantige Einzelkörper verbinden sich besser mit Mörtel und bilden einen stabilen Werkstein aus.

Sehr reine Quarzsande (um die 98%) spielen in der Glasindustrie eine wichtige Rolle. Tatsächlich sind geeignete Sande sehr rar und es gibt dokumentierte Fälle von Sandraub.

Schwachbindige Gesteine wie schluffiger Lehm haben große Bedeutung für die Herstellung von Mauerziegeln.

Bindige Sedimente wie Lehme und Tone sind wichtig für die keramische Industrie, Ziegelherstellung und chemische Industrie (zum Beispiel als Flußmittel).

Massive bzw. zementierte Gesteine wie zum Beispiel Travertin, ein poröser Kalkstein, spielen als Werk- und Dekorstein eine gewisse Rolle in der Architektur.

Quartäre Sedimente spielen weiters eine Rolle als Baugrund und Standort für Deponien. In den übertieften Tälern der Alpen sind quartäre Sedimente als Grundwasserspeicher wichtig.

Typische Holozäne Sedimente:

  • Bachschotter/-terassen
  • Flussschooter/-terassen
  • Auenablagerungen
  • Schwemmfächer
  • Murfächer
  • Schuttkegel
  • Moore
  • Seeablagerungen
  • Rückstandslehm
  • Blockmeer
  • Steinsohle
  • Orterde
  • Hanglehm/-schutt
  • Bergsturzmasse

Typische Pleistozäne Sedimente:

  • Moräne
  • Findlinge
  • Sander
  • Schotter
  • Beckenablagerungen
  • Periglaziale Sedimente
  • Blockstrom

Pflanzen der Alpen: Schuttpflanzen

Die Pflanzenwelt ist das Kleid der Erde, das als lebende und belebende Hülle ihre tote Masse bedeckt, die Starrheit ihrer Formen mildert und jeden Teil der Bergwelt recht eigentlich erst einen Reiz verleiht. Sie ist es, die unsere Matten gleich einen üppigen musterreichen Teppich vor die schroffen Felswände hinbreitet und die uns oft in den steilsten Gesteinsformationen noch mit zierlich prangenden Blüten erfreut – dort, wo jeder Pflanze  des Tieflandes der Standort zu eisig, der Hang zu steil und der Fels zu hart wäre. Mit auffallender Mannigfaltigkeit und mit seltenem Reichtum an Formen tritt die alpinen Flora in den Bergen auf und erschließt ihre farbensatte Schönheit jedem, der sich ihr liebevoll naht, jedem, der in den niedlichen Kindern des Blumenreichs seine Aufmerksamkeit zuwendet. Wollen wir doch in Hinkunft nicht allein mit Bewunderung, sondern auch mit verständnisvoller Betrachtung uns mit den Eigenheiten der alpinen Flora beschäftigen, den tausendfältigen Beziehungen zu ihrer engeren und weiteren, zu ihrer toten und lebendigen Umgebung Aufmerksamkeit schenken – geleitet von dem Gedanken, daß die Alpennatur in ihrer ganzen Größe nur der richtig verstehen kann, der dieselbe auch im Kleinen, in ihrer Einzelheiten beachtet und betrachtet!

TURSKY, F. (1921): Die alpine Flora in ihrer Abhängigkeit vom Klima und Boden des Hochgebirges.

Gebirge sind beeindruckende Formen der Erdkruste und Lebensraum für eine große Anzahl an Tier- und Pflanzenarten, einige davon kommen auch nur hier vor. Im Gebirge verändern sich Niederschlag und Temperatur mit der Höhe. Die verschieden exponierte Hänge weisen Unterschiede auf mit exponierten Stellen und Wind- und Niederschlagsschatten. Auch die Steilheit eines Hanges kann sich über kurze Strecken ändern. Diese kleinräumige Unterschiede und die horizontale und vertikale Gliederung der Alpen führen zu einer Vielzahl an Nischen für Lebewesen und verschiedene Lebensräumen, und machen die Alpen zu eines der artenreichsten Gebiete Europas.

Gebirge sind geologisch gesehen instabile Lebensräume, die durch Erosion ständig Veränderungen unterworfen sind. Mineralien und Nährstoffe im Gestein und den daraus gebildeten Boden beeinflussen das Wachstum und die Verbreitung von Pflanzen.

Kalkgebirge weisen oft steile Klippen auf die den Bewuchs mit höheren Pflanzen fast unmöglich machen. Silikatgebirge weisen eher sanfte Hänge auf, die mit Grasheiden bestanden sind. Dies hängt von der unterschiedlichen Verwitterbarkeit der Gesteine ab. Kalkgestein bildet Klippen aus und Schutthalden am Fuß der Felswände sind im Karbonatgebieten meist grobblockiger, während metamorphe Silikatgesteine eher sanfte Berghänge ausbilden und zu Feinschutt verwittern.

Der Schuttmantel unserer Berge ist ein außergewöhnlicher und herausfordernder Lebensraum. Schutthalden bildet sich durch die Ansammlung von Gesteinstrümmern am Fuß einer verwitternden Felswand. Der Schutt kann verschiedenste Korngrößen aufweisen, von großen Blöcken bis zu feiner Lehm, sowie lose oder fest sein. Schutthalden sind zumeist instabile Lebensräume. Stetig rutscht das Material nach unten und von oben erfolgt Steinschlag. Das abgelagerte Schuttmaterial ist sehr wasserdurchlässig und bildet einen trockenen Standort. Einige Pflanzenarten haben sich an diese schwierigen Bedingungen angepasst, von Gefäßpflanzen bis einzelne Bäume können Schutthalden besiedeln. Jüngere Pflanzen mit seichten Wurzelwerk lassen sich mit den Schutt nach unten tragen, erst ältere Pflanzen, mit tiefreichenden Wurzeln, können den Druck auch wiederstehen. Es bilden sich stabile Inseln aus mit geringerem Neigungswinkel und Feinschuttansammlung. Die Vegetationsdecke kann auch ihrerseits die Aktivität des Schutts beeinflussen. Starke Wurzeln können auch das Abrutschen von Schutt verhindern.

Schuttwanderer, wie das Täschelkraut (Noccaea rotundifolia), durchspinnen mit langen Kriechtrieben den Schutt und überleben indem die Triebe der Bewegung nachgeben. Beim Stängellosem Leimkraut (Silene acaulis) reicht das Wurzelsystem bis zu einem halben Meter in den Erdboden.

Täschelkraut (Noccaea rotundifolia).
Täschelkraut mit Triebe in losen Schutt.

Schuttstrecker, wie der Alpen-Säuerling (Oxyria digyna) oder der Rhätische Mohn (Papaver alpinum), überleben auch Überdeckung. Die dicken Sprosse arbeiten sich durch Schutt stets von neuem nach oben, und treiben dort immer wieder aus. Wurzeln sind sehr viel flexibler und stärker als der Spross, da sie sich notgedrungen an die Verhältnisse im Boden anpassen mussten (Wurzeln von Gräsern haben eine Zugfestigkeit von bis zu 50 kg/cm2, Bäume bringen es zu 160 kg/cm2).

Rhätische Mohn ( Papaver alpinum).

Schuttdecker und Schuttstauer, wie Gipskraut (Gypsophila repens), Silberwurz (Dryas octopetala), Blaugras (Sesleria sp.) und Horstseggen bilden wurzelnd Decken und Polster aus, die sehr stabil sind und der Schuttbewegeung wiederstehen. Schuttüberkriecher breiten sich mit schlaffen beblätterten Trieben über den Schutt aus.

Silberwurz (Dryas octopetala).

Felsschuttgesellschaften bilden Hindernisse aus und stellen erste Ruhepunkte in einer Schutthalde dar, wo sich auch nicht spezialisierte Pflanzen ansiedeln können.

Lotrechte Kalk- und Dolomitwände werden schließlich von Felspflanzen, die hier frei von Konkurrenz leben können, und mikroskopischen Algen und Flechten, die den Felsen zersetzten, besiedelt. In felsigen Bereichen finden sich oft seltene Pflanzenarten, weil das Gelände für die Nutzung durch den Menschen, z.B. Forstwirtschaft oder Ackerbau, ungeignet ist.

Dolomiten-Teufelskralle (Physoplexis comosa), Conturines, Sommer 2009.

Literatur:

  • COSENTINO (ed.) (2006): Ghiaioni e rupi di montagna – Una vita da pionieri tra le rocce. Quaderni Habitat. Ministro dell´ambiente e della tutela del territorio/ museo friulano di storia naturale, Udine: 158
  • RAHBEK, C. et al. (2019): Building mountain biodiversity: Geological and evolutionary processes. Science 365: 1114–1119

Geological Star Trek Review – “The Man Trap”

“Captain’s log, Stardate 1513.1. Our position, orbiting planet M-113. On board the Enterprise, Mister Spock temporarily in command. On the planet the ruins of an ancient and long-dead civilisation. Ship’s surgeon McCoy and myself are now beaming down to the planet’s surface. Our mission, routine medical examination of archaeologist Robert Crater and his wife Nancy. Routine but for the fact that Nancy Crater is that one woman in Doctor McCoy’s past.”

“The Man Trap” was the first episode ever aired of Star Trek – The Original Series (TOS) on September 8, 1966, even if it was the sixth episode produced. The National Broadcasting Company rejected the original pilot as they wanted an episode featuring a monster in space to get the public’s interest in the new science-fiction series.

In the episode, Captain Kirk and his crew visit the alien planet M-113 to check on an archaeological expedition. The planet’s surface appears at first lifeless. However, ruins seen in the background testify that a long lost civilization once existed here. The planet was also home to a multitude of creatures according to the sculptures and designs left in the architecture that scatters the surface of the now barren world. There remains some plant life, hardy drybrush, and poisonous plants.

The archaeological outpost on the planet M-113 is infiltrated by a mysterious shape-shifting creature that requires salt – the sodium-chloride mineral halite – to survive and is willing to obtain it by any means necessary. Crewman Darnell is the first victim of the “salt-vampire” and also the first “red-shirt” (wearing a blue shirt) to be killed in TOS.

The origin of the salt-vampire remains unknown and it is also never explained if the creature is somehow related to the ancient megalith builders. This poses an intriguing question. Without the ruins, would a hypothetical exo-scientist, as seen in the episode, be able to infer the existence of a former alien civilization?

Earth is the only planet we know for sure can host a technologically advanced civilization, however, buildings and cities are surprisingly short-lived. Even modern iron and concrete resist weathering for just some decades to centuries. Monuments build from sedimentary rocks, like the pyramids, may last some thousand years in dry environments. Reliefs in massive rocks, like Mount Rushmore carved into Harney-Peak granite, may remain recognizable for some hundred-thousand years.

Even if our technological wonders won’t survive millions of years into the future, other traces may remain. In just a few centuries, we have modified more than 70 percent of Earth’s land surface. Humans today move ten times more sediments than all natural processes combined, like landslides or rivers. Since the year 1500 more than three-hundred species of large vertebrates went extinct and many argue that we are witnessing the beginning of a mass extinction event. Earth will need millions of years to recover and replace the lost species.

Since the industrial revolution in the 19th century, humans have modified the concentration and flux of carbon and nitrogen in Earth’s atmosphere. New artificial materials, like plastic, are polluting the environment. Future geologists may find rare traces like “technofossils” – anomalous minerals or unnatural materials like plastiglomerate in the geological record. It is unknown how long such artificial materials will survive in the geological record. If buried in sediments, like plastic fragments on the bottom of the sea, maybe some million years. Eventually, heat, pressure and time will break the molecules apart and erase any direct evidence for humanity’s former presence on Earth.

Chemical signatures preserved in sedimentary rocks, caused by the changes in abundance of certain elements, like carbon (resulting from burning fossil fuels), nitrogen (used as fertilizer to feed seven billion people), radioactive or rare earth elements (used in modern technology), may still be detectable after billion of years. However, there are natural processes that may mimic such anomalous concentrations. The famous Oklo-reactor, a two billion years old uranium ore deposit that experienced a slow nuclear fission, was likely not built by an ancient civilization but formed by microbial activity.

Even climate change alone will not be sure evidence of a technologically advanced civilization. In the past, there were geological epochs with higher concentrations of carbon dioxide. 55 million years ago, during the Paleocene–Eocene Thermal Maximum, over some thousands of years a massive flux of greenhouse gases from the ocean into the atmosphere occurred and Earth’s global temperature rose by 8°C in response. However, the speed humans are changing the climate is unprecedented in the history of the Earth.

Combining various observations, like the rate of changes preserved in the geological record, the presence of anomalous materials, a spike of certain chemical elements and the extinction of species, future alien geologists visiting Earth may realize that a civilization, technologically advanced enough to influence the entire planet, once existed here. Will they find a thin layer of boundary clay, suggesting a sudden catastrophe ending this civilization? Was it a gradual demise following environmental problems? Or did the civilization survive still for thousands of years by adapting or changing its behavior in time? In the stratigraphic record time can be compressed and even future geologist may not be able to clearly distinguish between a sudden event, lasting just some centuries, or a prolonged era of a hundred-thousand years.

Galaxy Science Fiction, June 1951.

References:

  • SCHMIDT, G.A. & FRANK, A. (2019): The Silurian hypothesis: would it be possible to detect an industrial civilization in the geological record? International Journal of Astrobiology. Volume 18, Issue 2: 142-150

The Fossils Of The Dolomites – From Myth To Science

The first scientific mention of fossils from the Dolomites dates back to August 18, 1741. In a lecture with the title Dissertatio de Fossilibus universalis Diluvii by Franz Ferdinand von Giuliani, physician in the city of Innsbruck, he describes petrified shells from the Puster-Valley as evidence for the biblical flood (a popular explanation at the time). Since the Puster-Valley is cut into metamorphic rocks like schist and gneiss, rocks that contain no fossils, Giuliani probably was describing fossiliferous formations from the nearby Dolomites.

Fragment of an ammonite, an extinct group of marine mollusc animals.

In the Dolomites, the remains of ancient reefs and marine basins, it is easy to spot and find fossils. Since ancient times shepherds and farmers have found fossils in the pastures and on their fields. People wondered about the origins of the strange rocks, and for a long time myths and stories provided some explanations. For example, cloven hoof-like impressions found on rocks were explained as the devil’s footprints.

Section of Megalodus sp. or the devil’s hoof shell.
The fossil casts of Bellerophon, an extinct genus of marine snail, were also referred to as the devil’s curled horns.

Between December and January and during the Walpurgis Night (April 30th to May 1st) the devil will join the witches’ sabbath on the 2.563 metres high Schlern. Dancing all night long, at dawn the devil will return to hell, leaving behind only the imprints of his hooves on the bare rocks of the Dolomites.

In the Puster-Valley the devil is called “Tuifl” or “Krampus” and has the appearance of a half human–half goat demon, including cloven hooves.

It wasn’t until 1781, after naturalists compared the strange imprints with shells of modern mollusks, that they recognized that the devil’s hooves, in reality, are the cross-sections of bivalves. Some 216 to 203 million years ago large bivalves of the family Megalodontesidae lived on the muddy bottom of the Tethys Ocean. After their death, the shells were buried and partially filled with fine carbonate mud. The sediments of the Tethys Ocean were pushed upwards by tectonic movements some 65 to 40 million years ago. Today erosion slowly removes the surrounding sediment revealing the heart- of hoof-like sections of the cockle-like animals.

Megalodus sp. fossil casts.

And it wasn’t until the 19th century that the fossils of ancient sea creatures were seen as evidence that the Dolomites like Venus, the ancient goddess of beauty, were born out from the sea in the geological past.

Geological Knowledge in the “Dark Ages”

“And how will you explain to me the fact of the pebbles being struck together and lying in layers at different altitudes upon the high mountains.”

Leonardo da Vinci, 1508.
The Alps, ca. 1513, red chalk drawing by Leonardo da Vinci. He was fascinated by mountains and called them the “bones of the earth.”
The Conglomerato della Marmolada is a volcaniclastic succession consisting of conglomerates and sandstones accumulated in the basinal area comprised among the lower Ladinian carbonate platforms of the Dolomites.

The period between the fall of the Roman Empire and the Renaissance in the 17th century is sometimes referred to as the Middle or Dark Ages. Used nowadays often as a derogative term, it reflects more our poor understanding of those times then a real cultural demise.

In ancient times the Alps, especially the alpine pastures and rocky outcrops above the tree line, were referred to as Gamsgebirg – the chamois mountains. Only shepherds, collectors of plants and minerals and chamois hunters visited this area and maybe sometimes climbed a mountain. However, in the Middle Ages, rich ore deposits were discovered in the Alps. Schwaz in Tyrol, Schneeberg and Prettau in South Tyrol were famous for the silver and copper mined between the Alpine peaks.

Mining for metals in the Alps dates back at least for 4.800 years (a 25-meter long gallery in North Tyrol was dated to 2.800 BCE). In South Tyrol slag remains were dated to 1.200-1.000 BCE. Slag remains found in Ahrntal possibly date back to the early and middle bronze age (3.300-1.800 BCE), even if the provenance of the used copper ore is unknown. The extraction of copper ore in the Ahrntal became important in medieval times, especially in the 15th century. At the time prospectors were searching for former copper mines and also used geological clues to find new ore deposits. There was likely a lot of empirical knowledge of minerals and rocks to be found between prospectors and miners. Unfortunately, most of this knowledge wasn’t written down. Some evidence for this “lost wisdom” can be found in traces left by the miners.

Ore veins in Rülein von Calw “Bergbüchlein,” 1500.

Some basic understanding of the geometry of ore veins was necessary to follow them in the mountain, and some basic understanding of rock quality was necessary to dig the galleries. Advancement was limited to millimeters for every work shift, maybe 5 millimeters per day in hard rock, 5 centimeters if the rock was fractured and soft. Many medieval mines follow fault systems inside the mountain, where the shattered rocks were more easy to excavate. Depending on the encountered rock, the section of the gallery was different. In soft rocks the gallery has a narrow section, pointed roof to better distribute the weight or is reinforced with wooden structures. In hard rocks, the gallery has a flat roof and a larger section.

Reconstruction of miners using a large joint to their advantage.
Medieval gallery in hard rock with flat roof and wide section.

The modern name of important minerals, like feldspar, derives from terms used by the miners. “Feld” is an old name for hard rocks and “spat” referred to any rock or mineral that if stroked by a hammer forms plain fracture surfaces.

First written records appear in the 16th century. Georgius Agricola (1494-1555) published in 1556 together with the miner Blasius Weffringer his De re metallica libri XII. In his “twelve volumes about metals,” he describes various ways to find hidden ore veins. Strange smelling water, springs with unusual deposits of red clay, colored spots of minerals on rocks, disturbed soil cover and crippled plants may indicate ore deposits hidden underground. In his De ortu et causis subterraneorum (1546) he briefly discusses the formation of mountains, by fire, water and wind. Erosion by water forms gorges, then canyons and finally separated mountain ranges. Wind and fire, in the form of volcanism and geothermal activity, play a major role in dismantling (volcanic) mountains.

Later authors, like cartographer Sebastian Münster (1489-1552), cartographer Johannes Stumpf (1500-1566), naturalist Conrad Gessner (1516-1565) and especially naturalist Johann Jakob Scheuchzer (1672-1733), describe mountains in great details, including plants, animals and rocks. However, few provide an explanation for their formation. Scheuchzer depicts and describes folds in the Swiss Alps, explaining them as layers deposited and then folded by the biblical flood. Italian author Valerius Faventies publishes in 1561 De montium origine, wherein he collects all the contemporary theories explaining the formation of mountains. An important role was given to celestial forces, causing rock and minerals to grow and expand inside Earth.

Lecture in mineralogy, from “De nuptiis Philologiae et Mercurii”, 17th century.

Literatur:

  • LEFEVRE, W. (2010): Picturing the world of mining in the Renaissance: The Schwazer Bergbuch (1556). Max-Planck-Institut für Wissenschaftsgeschichte

Alpine Mineralklüfte

„Eine gegenteilige Ursache bringt den Kristall hervor. Durch starkes Gefrieren wird er verdichtet; jedenfalls findet man ihn nur dort, wo die winterlichen Schneefälle die eisigsten sind, und es steht fest, dass es sich um Eis handelt…Damit er entsteht, sind Regenwasser und reiner Schnee unerlässlich; auch verträgt er keine Wärme und man bedient sich seiner zur Kühlung von Getränken….Wir können mit Sicherheit angeben, dass er [der Bergkristall] in den Felsen der Alpen entsteht, oft an so unzugänglichen Orten, dass man ihn an einem Seil hängend herauszieht.
Warum er mit sechs Ecken an den Seiten wächst, davon kann nicht leicht ein Grund aufgefunden werden, um desto weniger, weil seine Spitzen nicht immer dieselbe Gestalt haben, und die Glätte seiner Flächen so vollendet ist, dass keine ihr gleichkommen kann.“

Beschreibung des Bergkristalls nach Plinius.

Die Klüfte der Alpen sind berühmt für ihren Kristallreichtum. Meist handelt es sich um offene Zerrklüfte, die durch die tektonische Beanspruchung während der späten Phase der Alpenfaltung (von 20 bis 15 Millionen Jahre) entstanden sind. Ab einer Temperatur von 500-450°C (ab einer Tiefe von 15-3 Kilometer) reagieren Gesteine wie Gneise, Glimmerschiefer und Amphibolite nicht mehr duktil , sondern spröde auf tektonische Verformung. Durch die Dehnung des abgekühlten, spröden Gesteins kommt es zur Bildung von Kluftspalten und Zerrklüften. Während der alpinen Metamorphose und bei Temperaturen um die 600-100°C kristallisierten in den Hohlräumen Kristalle aus.

Rekonstruktion einer alpinen Kluft im Granit des Mont Blanc mit typischer Mineralparagenese: Rauchquarz, seltener Fluorit, Chlorit breitet sich am Boden der Kluft aus.

Die Klüfte verlaufen meist senkrecht zur Schieferung und sind meist einige Meter bis Zehnermeter lang und maximal zwei Meter breit. Meist sind Klüfte komplett mit derben Quarz aufgefüllt, sind sie allerdings breit genug, kann ein Restraum offen bleiben, in denen Kristalle hineinwachsen können. Die Ausbildung der Klüfte und die anzutreffende Mineral-Paragenese sind stark vom Nebengestein abhängig.

Rekonstruktion einer alpine Zerrkluft in Chloritschiefer mit typischer Mineral-Paragenese in diesem Gesteinstyp: Adular, Quarz und Chlorit.

Adular, Albit, Calcit, Chlorit und Quarz kommen in vielen Klüften, auch unabhängig vom umgebenen Gesteinschemismus, vor – sie machen fast 80% der in einer Kluft zu findenden Mineralien aus. Charakteristische Kluftminerale sind weiters Aktinolith, Apatit, Ankerit, Dolomit, Epidot, Flourit, Hämatit, Titanit, Rutil und verschiedene Zeolithe (mehr als 140 verschiedene Mineralarten wurden in den Ostalpen nachgewiesen).

Um die 750-650°C, Temperaturen die in der Tiefe der Erdkruste herrschen können, bildet Wasser eine überkritische Phase aus (ein Zustand zwischen flüssig und gasförmig). Diese Phase ist sehr effektiv in Lösung von Elementen aus dem Muttergestein und Stofftransport, zwei Faktoren die das Kristallwachstum fördern. Es bilden sich Kristalle aus, meist in Form von Verwachsungen von verschiedenen Mineralien, oder seltener, als freie und gut ausgebildete Kristalle die in den verbleibenden Klufthohlraum hineinreichen. Das Vorherrschen von Quarz, Feldspat und Karbonate, die bei relativ niedrigen Temperaturen um die 550-350°C auskristallisieren, lässt vermuten, dass die meisten Klüfte bereits früh und sehr rasch ausgefüllt wurden. Die Kluft wird im Laufe der geologischen Zeit durch tektonische Kräfte in die Höhe gehoben. Verwitterung legt schließlich die Kluft frei und mit viel Glück findet der Mineraliensucher einen der begehrten Alpen-Kristalle.