Wie kommt der Dolomit in die Dolomiten?

„Aber auch noch für anderes, Größeres sind die Dolomiten ein Wahrzeichen, so schön, wie man es nicht leicht wieder findet: für geologische Vergangenheit. In besonderer Klarheit liegt hier der geologische Bau zutage. Auch dem Fernerstehenden vermag das Bild eine Welt in Erinnerung zu bringen, von der man im gewöhnlichen Leben keine Ahnung hat, die Gedanken zurückzuführen in Zeiten und Verhältnisse, die jenseits aller Vorstellung des Alltags liegen.”

Bau und Bild der Südtiroler Dolomiten, von R.v. Klebelsberg, Zeitschrift des Deutschen und Österreichischen Alpenvereins Bd. 57 (1926)

Die Landschaft der Dolomiten wird durch eine Mineral- bzw. Gesteinsart geprägt, die die “Bleichen Berge” auch ihren Namen verdanken: Dolomit. Die charakteristischen Steilwände einige der bekanntesten Gipfel in den Dolomiten werden von der Hauptdolomit-Formation gebildet – 1876 in die Alpenstratigrafie eingeführt. Es handelt sich dabei um eine bis zu 1.000 Meter mächtige zyklische Abfolge von Dolomitgesteinbänke, die im Flachwasserbereich einer ausgedehnten Karbonatplattform des ehemaligen Tethys-Meer abgelagert wurden.

Hauptdolomit am Heiligkreuzkofel.

Es mag überraschen, dass die Genese dieses Gesteins noch heute nicht völlig geklärt ist. Der italienische Bergbauingenieur Giovanni Arduino, einer der ersten Gelehrten der Dolomit chemisch untersuchte, vermutete in 1779, dass Dolomit durch die Umwandlung von normalem Kalkgestein durch Magma entstanden ist. Eine Hypothese, die bis zum 19. Jahrhundert sehr beliebt war. Tatsächlich finden sich in den Dolomiten zahlreiche vulkanische Ablagerungen und Intrusionen – allerdings nicht immer in Kontakt mit Dolomitgestein.

Geologischer Schnitt durch die Tiroler Alpen. Die Sedimentschichten werden hier durch magmatische Basalt- und Porphyrintrusionen verkippt und verstellt. Zeichnung der amerikanischen Illustratorin Orra White Hitchcock (1796-1863) nach dem deutschen Geologen Leopold von Buch (1774-1853).

Eine ähnliche Arbeitshypothese vermutet eine chemische Reaktion zwischen Kalkformationen und Magnesium-gesättigte Lösungen, was zur Bildung von sekundären Dolomitgestein führt.

Viele Dolomitformationen in den Dolomiten (wie der Hauptdolomit) weisen fossile Verkarstungserscheinungen auf. Anscheinend tauchten sie nach ihrer Ablagerung als Kalkgestein eine Zeitlang über den Meeresspiegel auf. Es kam zu einer Mischung zwischen Süß- und Magnesiumhaltigen Grundwasser. Das chemische Ungleichgewicht führte dann zum Dolomitisierungsprozess. Diese Hypothese könnte auch erklären, warum einige Gipfel, wie die Marmolada und Latemar, noch aus den ursprünglich abgelagerten Kalkgestein bestehen. Anscheinend kam es hier nie zum Dolomitisierungsprozess, vielleicht weil wasserundurchlässige Gesteine das Eindringen von Niederschlag- und Grundwasser verhinderten.

Satteldolomit – Dolomit-Kristalle die durch Magnesium-gesättigte Lösungen gebildet werden.

Der amerikanische Geologe James Dwight Dana (1813-1895) bemerkte während einer Forschungsreise in den Südpazifik, dass Dolomit in trocken gefallenen Korallenstöcke gefunden werden kann. Eine wichtige Beobachtung, die zeigte, dass Dolomit unter normalen Temperaturen und direkt aus Meerwasser ausgefällt werden kann. Der russische Mikrobiologe Georgi A. Nadson veröffentlichte 1903 eine Studie über die Ausfällung von primären Dolomit aus Meerwasser durch Bakterien.

Grundsätzlich gibt es drei Arten der Karbonatfällung aus Meerwasser – abiotisch, biologisch kontrolliert und biologisch induziert. Abiotische Fällung erfolgt nach rein chemischen Prozessen. Organismen, die aus dem Meerwasser aktiv Karbonat fällen, waren und sind v.a. Kalkalgen, Schwämme, Korallen und Mollusken. Biologisch induziert Karbonatfällung nimmt eine Art Zwischenstellung ein. Hier verursachen Mikroorganismen Veränderungen in der Wasserchemie, was dann zur Ausfällung von Karbonat aus dem Meerwasser führt. Ablagerungen in Poren ist ein Beispiel für abiotische Karbonatproduktion, die Skelette von Korallen und Algen ein Beispiel für biologische Karbonatproduktion. Mikrobenmatten, wie sie oft in Gezeitenzonen gefunden werden, führen mittels biologisch induzierter Karbonatausfällung zur Ablagerung von Karbonatkrusten.

Kalkooide die durch abiotische Ausfällung von Karbonat um einen Kristallisationskeim entstehen.

Die Hauptdolomit-Formation wird nicht nur aus Meter-mächtigen Bänken aufgebaut, sondern zeigt auch eine unregelmäßige, fein laminierte Schichtung. Vergleiche mit modernen, ähnlichen Ablagerungsbereichen – z. B. die Karbonatplattform der Bahamas – lassen darauf schließen, dass es sich um fossile Bakterienmatten handelt.

Lamination der Hauptdolomit-Formation.

Bakterien und Algen spielten vermutlich eine wichtige Rolle in der Bildung des Hauptdolomits. In modernen Ablagerungsräumen ist Dolomit trotz mikrobieller Aktivität auf einige wenige, salzige Lagunen beschränkt. Während der Ablagerung des Hauptdolomits in der Tethys vor über 200 Millionen Jahre, herrschten anscheinend besondere Bedingungen, die zunächst die Ausfällung von Kristallen aus Magnesiumhaltigen Aragonit (Ca[CO3]+Mg) aus dem Meerwasser begünstigten. Durch die Aktivität von Mikroorganismen reicherte sich Magnesium im Karbonatschlamm an und der Mg-Aragonit wandelte sich schließlich in reines Calcium-Magnesium-Carbonat – CaMg[CO3]2 oder Dolomit – um.

Ein Großteil des Dolomits in den Dolomiten wird heutzutage als eine Mischung von sekundär gebildeten Dolomitgestein und primären Dolomit erklärt, wobei der primäre Dolomit durch biologisch induzierte und abiotischer Ausfällung entstanden ist.

Literatur:

Geologische Wanderung: Das Knuttental bei Rein

“Welches Vergnügen, welche Wonne gewährt es doch dem Geiste, die ungheuren Bergmassen zu bewundern und das Haupt bis in den Wolken zu erheben! … Welches Verrgnügen kann wohl in dieser Welt so hoch, so wertvoll, so vollkommen sein wie das Bergsteigen?”

Conrad Gesner, 1541.

“Das Tauernfenster ist das Schreckgespenst der Antinappisten. Aller derer, die das Tauernfenster als Phantasie der Nappisten betrachten, im Sinne der Ultranappisten … Ultranappisten ist vor allem P. Termier, der Entdecker des Tauernfensters. Ultranappisten ist also auch E. Suess … Ultranappisten sind alle, die das Tauernfenster im Sinne P. Termiers sehen.”

Wiener Professor L. Kober “Bau und Entstehung der Alpen” 1955.

Das Knuttental verläuft von Rein, auf 1.600 Metern Seehöhe gelegen, nach Nordosten bis zum Klammljoch auf 2.300 Metern Höhe. Südlich von Rein erheben sich die vergletscherten Berge des weiß-grauen Rieserferner-Tonalit, ein magmatisches Gestein das vor dreißig Millionen Jahre in das Ostalpine Kristallin eingedrungen ist. Das Dorf Rein selbst steht auf metamorphen Gesteinen des Altkristallins. Der lokale Orthogneis, in den deutlich größere Feldspat-Ovale (“Augen”) auftreten, wird als Rein/Sand in Taufers Gneis zusammengefasst.

Reiner Orthogneis, Altkristallin, Rein in Taufers.
Blick von der Durraalm über dunkle Grate aus Glimmerschiefer und Paragneise zum Rieserferner Tonalit mit dem Schneebiger Nock.

Bei einer Wanderung von Rein aus ins Knuttental durchquert man zunächst Paragneise und Glimmerschiefer des Altkristallins, um bei der Knuttenalm (1.911 Meter) in die Matreier Zone zu gelangen. Die Matreier Zone ist ein schmaler Gesteinsstreifen am Südrand des Tauernfensters, mit einer Abfolge von hellen und dunklen Phylliten, Kalkglimmerschiefern, Quarziten, Kalke und Dolomite. Genau genommen ist die Matreier Zone eine Mélange aus ostalpinen Schuppen (meist Permotrias-Sedimente wie Marmor, Gips und Quarzit), penninischen mesozoischen Sedimenten (Kalkglimmerschiefer und kalkfreier Schiefer), sowie Linsen ozeanischer Kruste (Grünschiefer, Serpentinit), im strukturell höchsten Teil des Tauernfensters. In der Kreidezeit entwickelte sich eine Subduktionszone am südlichen Rand des Penninischen Ozeans. Aufgrund der akriven Tektonik brachen immer wieder Schollen vom Kontinentalabhang (Ostalpin), die einsedimentierten. Zeitgleich wurden Teile subduzierter ozeanischer Kruste aufgeschuppt.

Geologische Karte (Kartenblatt Welsberg) des Knuttentales. pgn: Paragneis und Glimmerschiefer; mf: Glimmerschiefer und Phyllite (Durreck-Kristallin) Td: Dolomit- und Kalksteinmarmor (Trias) der Matreier Zone; Cs: Kalkglimmerschiefer der Glockner Decke (Tauernfenster).
Blick zur Knuttenalm mit Bündnerschiefer (Kalk-, Ton-, Glimmer- oder Kalkglimmerschiefern) der Glockner Decke im Hintergrund.
Stark zerscherter Dolomit- und Kalksteinmarmor (Trias) der Matreier Zone, direkt bei der Knuttenalm.
Deutscher Kranzenzian (Gentianella germanica). Er besiedelt Magerrasen, Flachmoore, Wiesen, Matten, Triften und Schafweiden in Höhenlagen bis zu 2.600 Metern. Er gedeiht am besten auf lehmigen, kalkreichen Böden. Im Knuttental fördert die wechselhafte Geologie auch eine diverse Flora.

Literatur:

  • KRAINER, K. (2015): Nationalpark Hohe Tauern Geologie. Carinthia Verlag: 200

Sagenhaftes Südtirol: Der Teufelsstein bei Terenten

Das vereinzelte Vorkommen großer einzelner Gesteinsblöcke konnten sich die Menschen lange Zeit nicht erklären. Man schrieb diese Findlinge dem Walten dunkler Mächte und Zauberer zu.

Die Sage vom Teufelsstein

Das Naturdenkmal “Teufelsstein”.

Am Geißklapf bei St. Sigmund erkennt man im Felsen einen Geißfuß-Abruck. Den Stein hat einst der Teufel von Getzenberg herübergetragen und bis St. Sigmund gebracht. Und dieser Stein ist nicht der einzige im Pustertal, der etwas mit dem “Tuifl” zu tun hat.

Der Teufel heißt im Pustertal “Tuifl” und hat die Gestalt eines Geißbocks, einschließlich Bocksfüßen und gespaltenen Hufen.

Der Sage nach hatten die Mühlwalder Bauern im schönen Pustertal einst den Teufel derart erzürnt, dass dieser Rache schwor. Er trug einen Stein von Lüsen herüber und wollte ihn vom Mutenock nach Mühlwald hinunterrollen lassen. Dazu wählte der Teufel den kürzesten Weg. Weil der Stein aber schwer war und auch ein Teufel einmal rasten muss, hat er seine Kraxe mit dem Stein nieder gestellt. Mehrere senkrechte und waagrechte Striche auf dem Felsblock sind die Spuren der Kraxe. Den kleinen Stein hat der Teufel mitgenommen um die Kraxe besser abstellen zu können. In seiner Wut und in seinem Zorn gegen die Mühlwalder hatte er aber nicht bemerkt, dass der Morgen zu grauen begann und dass der Mesner von Terenten – der ein Frühaufsteher war – schon die Betglocke zum Morgengruß läutete. So musste der Teufel den Stein liegen lassen und wieder hinab in die Unterwelt flüchten.

So kommt es, dass der „Teufelsstein“ bis heute mitten im Wald auf ca. 1.700 Meter, oberhalb vom Nunewieser, liegt. Eine andere Version der Sage wurde von Hans Fink aufgezeichnet, wonach der Teufel mit dem besagten Teufelsstein durch die Lüfte flog, um in Mühlwald die neue Kirche zu zerstören. Doch beim Ave-Maria-Läuten entglitt ihm der Stein, und da liegt er noch heute.

Beim Teufelsstein handelt es sich tatsächlich um einen großen Findling, der von den Gletschern aus den nahen Zillertaler Alpen während der letzten Eiszeit hierher verfrachtet wurde. Als die großen Gletscher vor 18.000 Jahren abschmelzen, blieb auch der Gneis-Block liegen, und so liegt er noch heute da.

Unheimliche Geschichten ranken sich auch um den Hexenstein mit den mysteriösen Einkerbungen im harten Fels, der ganz in der Nähe des Teufelssteins gefunden werden kann. Der Schalenstein im Winnebachtal soll einst Schauplatz großer Hexenversammlungen gewesen sein. Zur Sommersonnenwende sollen sich dort die Hexen auch zu Trink- und Tanzgelage mit dem Teufel getroffen haben.

Literatur:

  • MAHLKNECHT, B. & AUKENTHALER-OBBERRAUCH, E. (2016): Südtiroler Sagen. Athesia Verlag: 396

Nutzen und Nutzung Quartärer Sedimente

Quartäre Sedimente werden oft unterschätzt, spielen aber eine bedeutende Rolle als Baugrund, Rohstoff, Grundwasserträger und auch mögliche Gefahrenquelle, in der Form von Massenbewegungen.

Tongrube “Gasser” mit Glaziolakustrine Schuttsedimente.

Lockergesteine werden in der Industrie zumeist als „Steine und Erden“ zusammengefasst, der Begriff umfasst bindige und nicht bindige Sedimentgesteine.

Nicht bindige Sedimente wie lockerere Sand und Kies sind vor allem als Baustoff für Straßenbau begehrt. Die Rundung und Korngrößenverteilung des Sediments spielt dabei eine bedeutende Rolle. Besonders hohe Ansprüche werden an Sand und Kies als Betonzuschlagstoffe gestellt. Das Material muss möglichst rein sein (lehmig-tonige Bestandteile unter 2%) und keine Beimischungen enthalten (die Wasser aufnehmen oder zu unerwünschten Reaktionen führen könnten). Scharfkantige Einzelkörper verbinden sich besser mit Mörtel und bilden einen stabilen Werkstein aus.

Sehr reine Quarzsande (um die 98%) spielen in der Glasindustrie eine wichtige Rolle. Tatsächlich sind geeignete Sande sehr rar und es gibt dokumentierte Fälle von Sandraub.

Schwachbindige Gesteine wie schluffiger Lehm haben große Bedeutung für die Herstellung von Mauerziegeln.

Bindige Sedimente wie Lehme und Tone sind wichtig für die keramische Industrie, Ziegelherstellung und chemische Industrie (zum Beispiel als Flußmittel).

Massive bzw. zementierte Gesteine wie zum Beispiel Travertin, ein poröser Kalkstein, spielen als Werk- und Dekorstein eine gewisse Rolle in der Architektur.

Quartäre Sedimente spielen weiters eine Rolle als Baugrund und Standort für Deponien. In den übertieften Tälern der Alpen sind quartäre Sedimente als Grundwasserspeicher wichtig.

Typische Holozäne Sedimente:

  • Bachschotter/-terassen
  • Flussschooter/-terassen
  • Auenablagerungen
  • Schwemmfächer
  • Murfächer
  • Schuttkegel
  • Moore
  • Seeablagerungen
  • Rückstandslehm
  • Blockmeer
  • Steinsohle
  • Orterde
  • Hanglehm/-schutt
  • Bergsturzmasse

Typische Pleistozäne Sedimente:

  • Moräne
  • Findlinge
  • Sander
  • Schotter
  • Beckenablagerungen
  • Periglaziale Sedimente
  • Blockstrom

Pflanzen der Alpen: Schuttpflanzen

Die Pflanzenwelt ist das Kleid der Erde, das als lebende und belebende Hülle ihre tote Masse bedeckt, die Starrheit ihrer Formen mildert und jeden Teil der Bergwelt recht eigentlich erst einen Reiz verleiht. Sie ist es, die unsere Matten gleich einen üppigen musterreichen Teppich vor die schroffen Felswände hinbreitet und die uns oft in den steilsten Gesteinsformationen noch mit zierlich prangenden Blüten erfreut – dort, wo jeder Pflanze  des Tieflandes der Standort zu eisig, der Hang zu steil und der Fels zu hart wäre. Mit auffallender Mannigfaltigkeit und mit seltenem Reichtum an Formen tritt die alpinen Flora in den Bergen auf und erschließt ihre farbensatte Schönheit jedem, der sich ihr liebevoll naht, jedem, der in den niedlichen Kindern des Blumenreichs seine Aufmerksamkeit zuwendet. Wollen wir doch in Hinkunft nicht allein mit Bewunderung, sondern auch mit verständnisvoller Betrachtung uns mit den Eigenheiten der alpinen Flora beschäftigen, den tausendfältigen Beziehungen zu ihrer engeren und weiteren, zu ihrer toten und lebendigen Umgebung Aufmerksamkeit schenken – geleitet von dem Gedanken, daß die Alpennatur in ihrer ganzen Größe nur der richtig verstehen kann, der dieselbe auch im Kleinen, in ihrer Einzelheiten beachtet und betrachtet!

TURSKY, F. (1921): Die alpine Flora in ihrer Abhängigkeit vom Klima und Boden des Hochgebirges.

Gebirge sind beeindruckende Formen der Erdkruste und Lebensraum für eine große Anzahl an Tier- und Pflanzenarten, einige davon kommen auch nur hier vor. Im Gebirge verändern sich Niederschlag und Temperatur mit der Höhe. Die verschieden exponierte Hänge weisen Unterschiede auf mit exponierten Stellen und Wind- und Niederschlagsschatten. Auch die Steilheit eines Hanges kann sich über kurze Strecken ändern. Diese kleinräumige Unterschiede und die horizontale und vertikale Gliederung der Alpen führen zu einer Vielzahl an Nischen für Lebewesen und verschiedene Lebensräumen, und machen die Alpen zu eines der artenreichsten Gebiete Europas.

Gebirge sind geologisch gesehen instabile Lebensräume, die durch Erosion ständig Veränderungen unterworfen sind. Mineralien und Nährstoffe im Gestein und den daraus gebildeten Boden beeinflussen das Wachstum und die Verbreitung von Pflanzen.

Kalkgebirge weisen oft steile Klippen auf die den Bewuchs mit höheren Pflanzen fast unmöglich machen. Silikatgebirge weisen eher sanfte Hänge auf, die mit Grasheiden bestanden sind. Dies hängt von der unterschiedlichen Verwitterbarkeit der Gesteine ab. Kalkgestein bildet Klippen aus und Schutthalden am Fuß der Felswände sind im Karbonatgebieten meist grobblockiger, während metamorphe Silikatgesteine eher sanfte Berghänge ausbilden und zu Feinschutt verwittern.

Der Schuttmantel unserer Berge ist ein außergewöhnlicher und herausfordernder Lebensraum. Schutthalden bildet sich durch die Ansammlung von Gesteinstrümmern am Fuß einer verwitternden Felswand. Der Schutt kann verschiedenste Korngrößen aufweisen, von großen Blöcken bis zu feiner Lehm, sowie lose oder fest sein. Schutthalden sind zumeist instabile Lebensräume. Stetig rutscht das Material nach unten und von oben erfolgt Steinschlag. Das abgelagerte Schuttmaterial ist sehr wasserdurchlässig und bildet einen trockenen Standort. Einige Pflanzenarten haben sich an diese schwierigen Bedingungen angepasst, von Gefäßpflanzen bis einzelne Bäume können Schutthalden besiedeln. Jüngere Pflanzen mit seichten Wurzelwerk lassen sich mit den Schutt nach unten tragen, erst ältere Pflanzen, mit tiefreichenden Wurzeln, können den Druck auch wiederstehen. Es bilden sich stabile Inseln aus mit geringerem Neigungswinkel und Feinschuttansammlung. Die Vegetationsdecke kann auch ihrerseits die Aktivität des Schutts beeinflussen. Starke Wurzeln können auch das Abrutschen von Schutt verhindern.

Schuttwanderer, wie das Täschelkraut (Noccaea rotundifolia), durchspinnen mit langen Kriechtrieben den Schutt und überleben indem die Triebe der Bewegung nachgeben. Beim Stängellosem Leimkraut (Silene acaulis) reicht das Wurzelsystem bis zu einem halben Meter in den Erdboden.

Täschelkraut (Noccaea rotundifolia).
Täschelkraut mit Triebe in losen Schutt.

Schuttstrecker, wie der Alpen-Säuerling (Oxyria digyna) oder der Rhätische Mohn (Papaver alpinum), überleben auch Überdeckung. Die dicken Sprosse arbeiten sich durch Schutt stets von neuem nach oben, und treiben dort immer wieder aus. Wurzeln sind sehr viel flexibler und stärker als der Spross, da sie sich notgedrungen an die Verhältnisse im Boden anpassen mussten (Wurzeln von Gräsern haben eine Zugfestigkeit von bis zu 50 kg/cm2, Bäume bringen es zu 160 kg/cm2).

Rhätische Mohn ( Papaver alpinum).

Schuttdecker und Schuttstauer, wie Gipskraut (Gypsophila repens), Silberwurz (Dryas octopetala), Blaugras (Sesleria sp.) und Horstseggen bilden wurzelnd Decken und Polster aus, die sehr stabil sind und der Schuttbewegeung wiederstehen. Schuttüberkriecher breiten sich mit schlaffen beblätterten Trieben über den Schutt aus.

Silberwurz (Dryas octopetala).

Felsschuttgesellschaften bilden Hindernisse aus und stellen erste Ruhepunkte in einer Schutthalde dar, wo sich auch nicht spezialisierte Pflanzen ansiedeln können.

Lotrechte Kalk- und Dolomitwände werden schließlich von Felspflanzen, die hier frei von Konkurrenz leben können, und mikroskopischen Algen und Flechten, die den Felsen zersetzten, besiedelt. In felsigen Bereichen finden sich oft seltene Pflanzenarten, weil das Gelände für die Nutzung durch den Menschen, z.B. Forstwirtschaft oder Ackerbau, ungeignet ist.

Dolomiten-Teufelskralle (Physoplexis comosa), Conturines, Sommer 2009.

Literatur:

  • COSENTINO (ed.) (2006): Ghiaioni e rupi di montagna – Una vita da pionieri tra le rocce. Quaderni Habitat. Ministro dell´ambiente e della tutela del territorio/ museo friulano di storia naturale, Udine: 158
  • RAHBEK, C. et al. (2019): Building mountain biodiversity: Geological and evolutionary processes. Science 365: 1114–1119

The Fossils Of The Dolomites – From Myth To Science

The first scientific mention of fossils from the Dolomites dates back to August 18, 1741. In a lecture with the title Dissertatio de Fossilibus universalis Diluvii by Franz Ferdinand von Giuliani, physician in the city of Innsbruck, he describes petrified shells from the Puster-Valley as evidence for the biblical flood (a popular explanation at the time). Since the Puster-Valley is cut into metamorphic rocks like schist and gneiss, rocks that contain no fossils, Giuliani probably was describing fossiliferous formations from the nearby Dolomites.

Fragment of an ammonite, an extinct group of marine mollusc animals.

In the Dolomites, the remains of ancient reefs and marine basins, it is easy to spot and find fossils. Since ancient times shepherds and farmers have found fossils in the pastures and on their fields. People wondered about the origins of the strange rocks, and for a long time myths and stories provided some explanations. For example, cloven hoof-like impressions found on rocks were explained as the devil’s footprints.

Section of Megalodus sp. or the devil’s hoof shell.
The fossil casts of Bellerophon, an extinct genus of marine snail, were also referred to as the devil’s curled horns.

Between December and January and during the Walpurgis Night (April 30th to May 1st) the devil will join the witches’ sabbath on the 2.563 metres high Schlern. Dancing all night long, at dawn the devil will return to hell, leaving behind only the imprints of his hooves on the bare rocks of the Dolomites.

In the Puster-Valley the devil is called “Tuifl” or “Krampus” and has the appearance of a half human–half goat demon, including cloven hooves.

It wasn’t until 1781, after naturalists compared the strange imprints with shells of modern mollusks, that they recognized that the devil’s hooves, in reality, are the cross-sections of bivalves. Some 216 to 203 million years ago large bivalves of the family Megalodontesidae lived on the muddy bottom of the Tethys Ocean. After their death, the shells were buried and partially filled with fine carbonate mud. The sediments of the Tethys Ocean were pushed upwards by tectonic movements some 65 to 40 million years ago. Today erosion slowly removes the surrounding sediment revealing the heart- of hoof-like sections of the cockle-like animals.

Megalodus sp. fossil casts.

And it wasn’t until the 19th century that the fossils of ancient sea creatures were seen as evidence that the Dolomites like Venus, the ancient goddess of beauty, were born out from the sea in the geological past.

Geological Knowledge in the “Dark Ages”

“And how will you explain to me the fact of the pebbles being struck together and lying in layers at different altitudes upon the high mountains.”

Leonardo da Vinci, 1508.
The Alps, ca. 1513, red chalk drawing by Leonardo da Vinci. He was fascinated by mountains and called them the “bones of the earth.”
The Conglomerato della Marmolada is a volcaniclastic succession consisting of conglomerates and sandstones accumulated in the basinal area comprised among the lower Ladinian carbonate platforms of the Dolomites.

The period between the fall of the Roman Empire and the Renaissance in the 17th century is sometimes referred to as the Middle or Dark Ages. Used nowadays often as a derogative term, it reflects more our poor understanding of those times then a real cultural demise.

In ancient times the Alps, especially the alpine pastures and rocky outcrops above the tree line, were referred to as Gamsgebirg – the chamois mountains. Only shepherds, collectors of plants and minerals and chamois hunters visited this area and maybe sometimes climbed a mountain. However, in the Middle Ages, rich ore deposits were discovered in the Alps. Schwaz in Tyrol, Schneeberg and Prettau in South Tyrol were famous for the silver and copper mined between the Alpine peaks.

Mining for metals in the Alps dates back at least for 4.800 years (a 25-meter long gallery in North Tyrol was dated to 2.800 BCE). In South Tyrol slag remains were dated to 1.200-1.000 BCE. Slag remains found in Ahrntal possibly date back to the early and middle bronze age (3.300-1.800 BCE), even if the provenance of the used copper ore is unknown. The extraction of copper ore in the Ahrntal became important in medieval times, especially in the 15th century. At the time prospectors were searching for former copper mines and also used geological clues to find new ore deposits. There was likely a lot of empirical knowledge of minerals and rocks to be found between prospectors and miners. Unfortunately, most of this knowledge wasn’t written down. Some evidence for this “lost wisdom” can be found in traces left by the miners.

Ore veins in Rülein von Calw “Bergbüchlein,” 1500.

Some basic understanding of the geometry of ore veins was necessary to follow them in the mountain, and some basic understanding of rock quality was necessary to dig the galleries. Advancement was limited to millimeters for every work shift, maybe 5 millimeters per day in hard rock, 5 centimeters if the rock was fractured and soft. Many medieval mines follow fault systems inside the mountain, where the shattered rocks were more easy to excavate. Depending on the encountered rock, the section of the gallery was different. In soft rocks the gallery has a narrow section, pointed roof to better distribute the weight or is reinforced with wooden structures. In hard rocks, the gallery has a flat roof and a larger section.

Reconstruction of miners using a large joint to their advantage.
Medieval gallery in hard rock with flat roof and wide section.

The modern name of important minerals, like feldspar, derives from terms used by the miners. “Feld” is an old name for hard rocks and “spat” referred to any rock or mineral that if stroked by a hammer forms plain fracture surfaces.

First written records appear in the 16th century. Georgius Agricola (1494-1555) published in 1556 together with the miner Blasius Weffringer his De re metallica libri XII. In his “twelve volumes about metals,” he describes various ways to find hidden ore veins. Strange smelling water, springs with unusual deposits of red clay, colored spots of minerals on rocks, disturbed soil cover and crippled plants may indicate ore deposits hidden underground. In his De ortu et causis subterraneorum (1546) he briefly discusses the formation of mountains, by fire, water and wind. Erosion by water forms gorges, then canyons and finally separated mountain ranges. Wind and fire, in the form of volcanism and geothermal activity, play a major role in dismantling (volcanic) mountains.

Later authors, like cartographer Sebastian Münster (1489-1552), cartographer Johannes Stumpf (1500-1566), naturalist Conrad Gessner (1516-1565) and especially naturalist Johann Jakob Scheuchzer (1672-1733), describe mountains in great details, including plants, animals and rocks. However, few provide an explanation for their formation. Scheuchzer depicts and describes folds in the Swiss Alps, explaining them as layers deposited and then folded by the biblical flood. Italian author Valerius Faventies publishes in 1561 De montium origine, wherein he collects all the contemporary theories explaining the formation of mountains. An important role was given to celestial forces, causing rock and minerals to grow and expand inside Earth.

Lecture in mineralogy, from “De nuptiis Philologiae et Mercurii”, 17th century.

Literatur:

  • LEFEVRE, W. (2010): Picturing the world of mining in the Renaissance: The Schwazer Bergbuch (1556). Max-Planck-Institut für Wissenschaftsgeschichte

Alpine Mineralklüfte

„Eine gegenteilige Ursache bringt den Kristall hervor. Durch starkes Gefrieren wird er verdichtet; jedenfalls findet man ihn nur dort, wo die winterlichen Schneefälle die eisigsten sind, und es steht fest, dass es sich um Eis handelt…Damit er entsteht, sind Regenwasser und reiner Schnee unerlässlich; auch verträgt er keine Wärme und man bedient sich seiner zur Kühlung von Getränken….Wir können mit Sicherheit angeben, dass er [der Bergkristall] in den Felsen der Alpen entsteht, oft an so unzugänglichen Orten, dass man ihn an einem Seil hängend herauszieht.
Warum er mit sechs Ecken an den Seiten wächst, davon kann nicht leicht ein Grund aufgefunden werden, um desto weniger, weil seine Spitzen nicht immer dieselbe Gestalt haben, und die Glätte seiner Flächen so vollendet ist, dass keine ihr gleichkommen kann.“

Beschreibung des Bergkristalls nach Plinius.

Die Klüfte der Alpen sind berühmt für ihren Kristallreichtum. Meist handelt es sich um offene Zerrklüfte, die durch die tektonische Beanspruchung während der späten Phase der Alpenfaltung (von 20 bis 15 Millionen Jahre) entstanden sind. Ab einer Temperatur von 500-450°C (ab einer Tiefe von 15-3 Kilometer) reagieren Gesteine wie Gneise, Glimmerschiefer und Amphibolite nicht mehr duktil , sondern spröde auf tektonische Verformung. Durch die Dehnung des abgekühlten, spröden Gesteins kommt es zur Bildung von Kluftspalten und Zerrklüften. Während der alpinen Metamorphose und bei Temperaturen um die 600-100°C kristallisierten in den Hohlräumen Kristalle aus.

Rekonstruktion einer alpinen Kluft im Granit des Mont Blanc mit typischer Mineralparagenese: Rauchquarz, seltener Fluorit, Chlorit breitet sich am Boden der Kluft aus.

Die Klüfte verlaufen meist senkrecht zur Schieferung und sind meist einige Meter bis Zehnermeter lang und maximal zwei Meter breit. Meist sind Klüfte komplett mit derben Quarz aufgefüllt, sind sie allerdings breit genug, kann ein Restraum offen bleiben, in denen Kristalle hineinwachsen können. Die Ausbildung der Klüfte und die anzutreffende Mineral-Paragenese sind stark vom Nebengestein abhängig.

Rekonstruktion einer alpine Zerrkluft in Chloritschiefer mit typischer Mineral-Paragenese in diesem Gesteinstyp: Adular, Quarz und Chlorit.

Adular, Albit, Calcit, Chlorit und Quarz kommen in vielen Klüften, auch unabhängig vom umgebenen Gesteinschemismus, vor – sie machen fast 80% der in einer Kluft zu findenden Mineralien aus. Charakteristische Kluftminerale sind weiters Aktinolith, Apatit, Ankerit, Dolomit, Epidot, Flourit, Hämatit, Titanit, Rutil und verschiedene Zeolithe (mehr als 140 verschiedene Mineralarten wurden in den Ostalpen nachgewiesen).

Um die 750-650°C, Temperaturen die in der Tiefe der Erdkruste herrschen können, bildet Wasser eine überkritische Phase aus (ein Zustand zwischen flüssig und gasförmig). Diese Phase ist sehr effektiv in Lösung von Elementen aus dem Muttergestein und Stofftransport, zwei Faktoren die das Kristallwachstum fördern. Es bilden sich Kristalle aus, meist in Form von Verwachsungen von verschiedenen Mineralien, oder seltener, als freie und gut ausgebildete Kristalle die in den verbleibenden Klufthohlraum hineinreichen. Das Vorherrschen von Quarz, Feldspat und Karbonate, die bei relativ niedrigen Temperaturen um die 550-350°C auskristallisieren, lässt vermuten, dass die meisten Klüfte bereits früh und sehr rasch ausgefüllt wurden. Die Kluft wird im Laufe der geologischen Zeit durch tektonische Kräfte in die Höhe gehoben. Verwitterung legt schließlich die Kluft frei und mit viel Glück findet der Mineraliensucher einen der begehrten Alpen-Kristalle.

Sagenhaftes Südtirol: Der Bergsturz von Gand

“Nördlich vom Dorf Oberplanitzing bei Kaltern breitet sich die Gand aus, ein Trümmerfeld, besät mit wüsten Felsgeröll, als wäre in der Urzeit ein Berg in sich zusammengebrochen. In grauer Vorzeit stand hier eine schöne und große Stadt. Eine uralte, noch immer trotzig aufragende Ruine, der St. Georgs Turm genannt, gibt heute noch Zeugnis davon. Die Bewohner dieser Stadt waren überaus reich, darum aber auch stolz und übermütig. Einmal, es war gerade Fasnacht , wollten die ausgelassenen Städter einen lebendigen Ochsen die Haut abziehen. Da kam ein furchtbares Gewitter auf und das Wasser stürzte von allen Berghängen in die Tiefe. Der benachbarte Berg wurde so gründlich unterspült, dass er auf die Stadt niederstürzte und dieselbe mit Mann und Haus unter den Felstrümmern begrub. Seit der Zeit hat es kein Mensch mehr gewagt, sich in der Gand anzusiedeln, nur der Hirte treibt die Ziegen dorthin auf die Weide.”

„Eine große Anzahl von Volkssagen verdankt ihre Entstehung dem Bedürfnis des Volkes nach einer Erklärung für gewisse auffallende reale Gegebenheiten seiner Umwelt. Eine Erscheinung in der Natur … auffallende Formen etwa eines Steines oder Berges … Dinge und Erscheinungen, deren Dasein auch dem naiven Beobachter auffällt und nach einer Erklärung verlangt, finden diese Erklärung, meist mit einfachsten Mitteln, durch die Erzählung, deren ganzen Sinn und Wert kein anderer ist als eben die Beantwortung der Frage nach dem Warum … Eine zweite Gruppe von Volkssagen ist aus irgendeinem tatsächlichen Ereignis herausgewachsen.“

Deutscher Sagenforscher Friedrich Ranke.

Der felsige Untergrund im unteren Etschtal besteht aus den sogenannten Bozner Porphyr oder nach moderner Bezeichnung die Etschtaler Vulkanit-Gruppe/Südtiroler Vulkanitkomplex. Aus diesen Gestein besteht auch der Bergsturz vom Gandberg, der mehr als einen Quadratkilometer mit unzähligen großen und kleinen Porphyrblöcken bedeckt. Durch Bohrungen und Aufschlüsse lässt sich die Mächtigkeit der Bergsturzablagerungen auf wenige Meter bis zu einigen Zehnermeter eingrenzen, darunter folgen bis zu 100 Meter mächtige fluvioglaziale schluffige Kiese mit Steinen.

Dieser Bergsturz heißt im Volksmund die Eppaner Gand  (Gand, ein altes langobardsches Wort das so viel wie Felssturz oder Trümmerfeld bedeutet).

Abbruchnische in den Porphyrwänden des Gandberg und Lambrech-Hügel.
Geologische Karte der Eppaner Gand.

Die Bergsturzmasse liegen zwischen 515 bis 520 Meter ü.d.M. und ist durch eine langgezogene Mulde und den Lambrech-Hügel gekennzeichnet, beides Formen die durch die Bewegung und Ablagerung des Bergsturzes entstanden sind. Das Sturzfeld ist mit einem Wald aus Edelkastanien und Föhren bedeckt, große Teile sind auch unbewachsen.

Das grobe Blockwerk führt auch zum Phänomen der Eislöcher. Luft strömt durch ein Spaltensystem zwischen den Porphyrblöcken der Geröllhalde, die auf den Fuße des Bergsturzes aufliegt, von oben nach unten und kühlt sich dabei ab. Die schwere kalte Luft bleibt als Kaltluftsee von etwa fünf Metern Höhe in der Mulde liegen. Die Temperatur kann bis zu 20° kühler sein als auf der nahen Kuppe des Lambrech-Hügels.

Infolge diesen kühlen Klimas gedeihen hier Pflanzen die sonst nur wesentlich höher, bis zu 1.000 Meter, in alpinen Regionen zu finden sind. An der Basis der Senke gedeihen kälteresistente Pflanzen, am Rand dagegen wärmeliebende Pflanzen. Über 600 Pflanzenarten können hier auf engsten Raum gefunden werden, davon über 160 Flechtenarten. Man kann mit wenigen Schritten vom Submediterranean Buschwald, mit der Kastanie, zu einem Subalpin-montanen Fichtenwald zur subalpiner Zwergstrauchheide, mit der Alpenrose, zu einem Alpin-subalpinen Rasen, mit Alpen-Rispengras, Flechten und Moose, gelangen. 

Unter diesen chaotischen Steinmassen tiefen sich da und dort schaurige Löcher und Höhlen, in welchen man zur heißen Sommerszeit eine fast unerträgliche Kälte, selbst unvergängliches Eis, und an dessen Rand, merkwürdig genug, die blühenden Alpenrosen und den wohlriechenden Speik findet.

Johann Jakob Staffler, 1846.
Kiefernwald auf groben Blockwerk. Schnee bleibt in der Mulde der Eislöcher bevorzugt liegen, selbst in trockenen Wintern.

Das Alter des Bergsturzes ist unbekannt, er muss aber jünger als die letzte Eiszeit sein, da er auf gerundeten Geröllen und Schottern aufliegt welche dort offenbar von der Etsch nach Abschmelzen der Gletscher abgelagert worden sind. Gerölle aus diesen Ablagerungen wurden auch für eine kleine Kapelle in der Nähe verwendet. Auch ein historisches Alter wurde vorgeschlagen, da es eben eine Sage gibt, die sich um eine durch den Bergsturz verschüttete Stadt dreht.

Manche der eingangs angeführten Schriftsteller… nehmen jedoch an, daß die Eppaner Gand überhaupt nicht durch einen einzigen Bergsturz, sondern durch mehrere, in größeren Zeiträumen aufeinander-folgenden Bergstürze aufgeschüttet, daß insbesonders die Talfurche an ihrem Südende erst durch einen viel jüngeren, nach mündlicher Überliefern um das Jahr 1000 nach Christus erfolgten Bergsturz zugeschüttet worden sei und daß die Siedlung auf der Lambrech bis zu dieser Zeit bewohnt … seien. Allen diesen Annahmen fehlt es jedoch an einer sicheren tatsächlichen Grundlage.

Wilhelm Pfaff (1933) “Die Eislöcher in Ueberetsch ihre Vegetationsverhältnisse und ihre Flora.
Ansicht der Eppaner Gand und Eislöcher, aus Wilhelm Pfaff (1933) “Die Eislöcher in Ueberetsch ihre Vegetationsverhältnisse und ihre Flora.”

Literatur:

  • MAHLKNECHT, B. (1989): Südtiroler Sagen. Athesia Verlag, 3. Auflage.

Sagenhaftes Südtirol: Geologie und die Bleichen Berge

De ròba vèyes
e de prùmes tèmpes
ay ò aldì
e vo kantè bayèdes!

Von alten Dingen
und von alten Zeiten
hab ich gehört
und will ich nun erzählen!

Spruch der ladinisches Cantastòries
Die Geislergruppe im Grödental.

Mythen und Sagen sind ein früher Versuch des Menschen, Unverständliches verständlich zu machen. Die Eigenart der Dolomiten, mit ihren hoch aufragenden Gebirgsstöcke umsäumt von sanften, Gras bewachsenen Böden dazwischen, regte die Phantasie der Menschen an. Lange bevor die moderne Geologie die Eigenart der Dolomiten auf Gesteinsbildung (Lithogenese), Gebirgsbildung (Orogenese) und Oberflächen- und Landschaftsbildung (Morphogenese) zurückführte, erklärten sich die Ladiner die Geburt der Bleichen Berge folgendermaßen:

Vor langer Zeit heiratete der Königssohn eines vergessenen Reiches im Gebiet der heutigen Alpen die Mondprinzessin. Die beiden liebten sich über alles, doch konnte der Prinz das gleißende Licht das auf dem Mond herrschte kaum, seine Gemahlin den Anblick der grauen Felsen und dunklen Wälder in den Bergen überhaupt nicht ertragen. An ein gemeinsames Leben war nicht zu denken und so trennten sich die beiden Liebenden schweren Herzens.

Eines Tages, als der unglückliche Prinz wieder einmal allein im Wald umherirrte, traf er den König der Zwerge, der nach Siedlungsland für sein Volk Ausschau hielt. Nachdem er sich die traurige Geschichte angehört, versprach der Zwergenkönig dem jungen Prinzgemahl im Austausch gegen die Erlaubnis, sich mit seinem Volk in den Wäldern häuslich nierderzulassen, die Berge des Reiches der Dolomiten in hellem Glanz erscheinen zu lassen. Der Bund wurde durch Handschlag besiegelt und in der darauffolgenden Nacht fing das Zwergvolk das Mondlicht Strahl für Strahl ein und überzog damit die dunklen Felsen. Mit der Rückkehr der Mondprinzessin kehrte auch das Glück wieder in das Reich der Dolomiten ein.

Die schönsten Sagen aus dem Gadertal (1993)

Im Unterschied zu den Penninikum und Austroalpinen Decken im Norden, mit dem das Südalpin die ehemalige geographische Lage entlang des Kontinentalrandes der Afrikanischen Platte gemeinsam hat, ist das Südalpin durch eine geringe tektonische Verformung (zumeist lokale Überschiebungen) und geringer Metamorphosegrad gekennzeichnet. Während die Randgebiete der Dolomiten von metamorphen, relativ dunklen, Gesteinen wie Phyllite, Glimmerschiefer und Gneise geprägt werden, findet man in den Dolomiten noch große Gebiete mit relativ ungestörten Abfolgen von hellen Kalken und Dolomitgestein.

Die Landschaft der Dolomiten wird durch eine Mineral- bzw. Gesteinsart geprägt, die den Bleichen Berge auch ihren Namen  verdanken: Dolomit. Dolomit ist ein wichtiges Mineral und Gesteinsart – Gebirge wie die Dolomiten, Teile des Apennin und die Dinariden verdanken diesen Mg- haltigen Karbonatgestein ihre karge Schönheit. Die charakteristischen Steilwände einige der bekanntesten Gipfel in den Dolomiten werden von der Hauptdolomit-Formation gebildet – 1876 in die Alpenstratigraphie eingeführt. Es handelt sich dabei um eine bis zu 1.000 Meter mächtige zyklische Abfolge von Dolomitgestein-bänken, die in dem Flachwasserbereich einer ausgedehnten Karbonatplattform der Tethys-See abgelagert wurden. 

Die Conturines im Gadertal mit der geschichteten Hauptdolomit-Formation.

Bis um 1271 wurde die Grafschaft Tirol nur als “Land im Gebirge” bezeichnet. Ab 1876 setzte sich dann der Name Dolomiten für die veraltete Bezeichnung der Bleichen Berge durch und seit dem ersten Weltkrieg tragen die Dolomiten auch ofiziell diesen Namen. Übrigens der einzige Fall, in dem das Mineral einer Gegend den Namen gab und nicht umgekehrt.